
Published on LabJack (https://labjack.com)

Home > Support > Software & Driver > API Documentation > LJM User's Guide

LJM User's Guide
Add new comment

Welcome to the LJM User's Guide! This document describes the API and usage of the LabJack LJM library. The LabJack LJM library is a cross platform
library that allows programs to read and write Modbus registers implemented on a variety of LabJack devices. A searchable list of all of the supported
registers that can be read from or written to is available on our Modbus Map page.

Supported Devices

LJM supports T-series devices:

T4
T7

LJM also supports the Digit, which is deprecated.

Software support for other devices can be found on the Software page.

LJM Download

See here for the LJM Installer.

Examples

Example code for LJM is available in Python, LabVIEW, C/C++, and other languages.

Reading This Document

File Attachment:
 LabJack-LJM-Library-Docs-Export-20160914.pdf

Table of Contents Note

Navigating using the Table of Contents

An efficient way to navigate this online document is to use the Table of Contents button to the left.

Offline PDF Note

Offline PDF

If you are looking at a PDF, hardcopy, or other downloaded offline version of this document, realize that it is possibly out-of-date since the original is an online
document. Also, this document is designed as online documentation, so the formatting of an offline version might be less than perfect.

To make a PDF of this entire document including all child pages, click "Save as PDF" towards the bottom-right of this page. Doing so converts these pages to
a PDF on-the-fly, using the latest content, and can take 20-30 seconds. Make sure you have a current browser (we mostly test in Firefox and Chrome) and the
current version of Acrobat Reader. If it is not working for you, rather than a normal click of "Save as PDF" do a right-click and select "Save link as" or similar.
 Then wait 20-30 seconds and a dialog box will pop up asking you where to save the PDF. Then you can open it in the real Acrobat Reader rather than
embedded in a browser.

Rather than downloading, though, we encourage you to use this web-based documentation. Some advantages:

We can quickly improve and update content.
Click-able links to further or related details throughout the online document.
The site search includes this document, the forum, and all other resources at labjack.com. When you are looking for something try using the site search.
For support, try going to the applicable page and post a comment. When appropriate we can then immediately add/change content on that page to
address the question.

Periodically we use the "Save as PDF" feature to export a PDF and attach it to this page (below).

31 Jul 2019

https://labjack.com
https://labjack.com/
https://labjack.com/support
https://labjack.com/support/software
https://labjack.com/support/software/api
https://labjack.com/support/software/api/ljm#comment-form
https://labjack.com/ljm
https://labjack.com/support/software/api/modbus/modbus-map
https://labjack.com/products/t4
https://labjack.com/products/t7
https://labjack.com/support/software
https://labjack.com/support/software/installers/ljm
https://labjack.com/support/software/examples
https://labjack.com/table-contents-note
https://labjack.com/offline-pdf-note
https://labjack.com/search
https://labjack.com/sites/default/files/LabJack-LJM-Library-Docs-Export-20160914.pdf
https://labjack.com/support/software/api/ljm/constants/ljmspecialaddressesfile

More on
Opening

More on Reading/Writing

More on
streaming

More on Other
Functions

More on Error
Codes

1 - Overview
The LJM Library is a set of functions used to easily communicate with several of our devices using a simple Modbus interface. The goal is to be easy to use
and understand, yet flexible.

All important values & data from the device can be read and/or written by using the associated register(s). Thus, the process for reading the serial number, an
analog input, or a timer is all functionally the same, you simply provide a different address. We have also included functionality so that values can be specified
using a name instead of numerical value, such as "AIN6" to represent the register(s) that will read analog input number 6.

Begin with the open function.
Each device is represented by a handle which is obtained by using one of the open functions to open that device. That
handle is passed to the other functions to specify that those functions should operate on that device.

Use the read/write functions.
The read/write functions provide a simple interface for reading/writing data by either specifying a name or an address.

Use the stream functions.
The stream functions allow data to be collected at a constant and/or fast rate.

More functions.
There are also utility functions provided to do things like debugging and making unit conversions easier, as well as a
few functions that let you configure the library itself.

Error codes describe the
problem. A set of constants are defined for specific use within the library to represent various values, and a robust set of error

codes that are returned when something goes wrong.

2 - Function Reference

2.1 - Opening and Closing
Summary

Open a LabJack device to communicate with it. Close it to allow other processes to open it.

Opening

Either LJM_Open or LJM_OpenS must be used to open a LabJack. The LJM_Open and LJM_OpenS functions will detect a LabJack connected to the computer,
and create a device handle. The device handle is then passed as an input to other functions.

LJM_Open - Open a device based on integer filter parameters.
LJM_OpenS - Open a device based on string filter parameters.

Use whichever is more convenient for you.

USB connections are preferred - If ConnectionType is equal to LJM_ctANY (0), LJM_Open will attempt to open a USB connection before trying to open a TCP
connection.

Device connections are claimed - Once a LabJack device is opened on a given connection type, other processes will generally not be able to open that
same device using the same connection type until the device connection is closed by using LJM_Close or LJM_CloseAll.

Subsequent calls may return the same handle - Once a device is opened, subsequent calls to LJM_Open / LJM_OpenS will return the handle to that device if
the DeviceType , ConnectionType , and Identifier parameters describe that device. In this case, calling LJM_Open or LJM_OpenS is nearly instant because no
device communication occurs. For example:

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/opening-and-closing
https://labjack.com/support/ljm/users-guide/function-reference/single-value-functions
https://labjack.com/support/ljm/users-guide/function-reference/stream-functions
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmclose
https://labjack.com/support/ljm/users-guide/function-reference/ljmcloseall

LJM_Open(LJM_dtANY, LJM_ctANY, LJM_idANY, ...)
// If this returns a handle to a T7, with serial number 470010729, connected via USB...

LJM_Open(LJM_dtT7, LJM_ctUSB, "470010729", ...)
// ...then this would return the same handle, without opening a new device connection

// ...and these would attempt to open a new device connection and return a different handle:
LJM_Open(LJM_dtANY, LJM_ctANY, "470010999", ...) // Different serial number
LJM_Open(LJM_dtANY, LJM_ctETHERNET, "470010729", ...) // Different connection type

Devices like the T7 may have multiple device connections at once. The following calls would each return a different device handle:

LJM_Open(LJM_dtT7, LJM_ctUSB, "470010729", ...)

LJM_Open(LJM_dtT7, LJM_ctETHERNET, "470010729", ...)

LJM_Open(LJM_dtT7, LJM_ctWIFI, "470010729", ...)

Reconnection is automatic - If LJM detects a broken connection, it will automatically attempt to reconnect. If the reconnect is unsuccessful, LJM will return
the errorcode LJME_RECONNECT_FAILED. When this happens, many applications can simply retry calling the function that returned
LJME_RECONNECT_FAILED with the same parameters. For more details, see the reconnection page.

Using an IP Address as the Identifier parameter is efficient - In order to open a TCP device with a specific serial number or name, LJM will communicate
with all LabJack devices on the network, asking each for their serial number or name. In contrast, opening a TCP LabJack device by IP address will only send
packets to that IP address, which is faster and more efficient. Setting up static IP addresses can be troublesome, so use what is appropriate for you application.

Specific IPs will be checked - Specific IP addresses may be defined, which LJM will try to open during every Ethernet- or WiFi-based Open or ListAll call.

Closing

Closing a handle will remove the associated device connection from the LJM library. Closing will both free the device to be opened again, and free allocated
system resources.

LJM_Close - Close a specific device connection, based on the handle number.
LJM_CloseAll - Close any/all open device connections.

Devices are closed automatically when LJM is unloaded - When the LJM library (.dll, .dylib, or .so) is unloaded, it will automatically close all devices.

Device Not Found?

If a device isn't properly being found, some important debugging information can be found in our Device Not Found? App Note. If a network connection needs
to be debugged, read through our Setup WiFi and Ethernet App Note as well.

2.1.1 - Open
Opens a desired LabJack and associates a device handle number (connection ID). The device handle may then be passed as an input to other functions.

Syntax

LJM_ERROR_RETURN LJM_Open(
 int DeviceType,
 int ConnectionType,
 const char * Identifier,
 int * Handle)

Parameters

DeviceType [in]
An integer containing the type of the device to be connected:
LJM_dtANY (0) - Open any supported LabJack device type
LJM_dtT4 (4) - Open a T4 device
LJM_dtT7 (7) - Open a T7-series device
LJM_dtTSERIES (84) - Open a T4 or T7
LJM_dtDIGIT (200) - Open a Digit-series device

For other LabJack devices, see What driver/library should I use with my LabJack?

ConnectionType [in]
An integer containing the type of connection desired:
LJM_ctANY (0), LJM_ctUSB (1), LJM_ctTCP (2), LJM_ctETHERNET (3), LJM_ctWIFI (4)

Other UDP options:
LJM_ctNETWORK_UDP (5), LJM_ctETHERNET_UDP (6), LJM_ctWIFI_UDP (7)

Other TCP or UDP options:
LJM_ctNETWORK_ANY (8), LJM_ctETHERNET_ANY (9), LJM_ctWIFI_ANY (10)

31 Jul 2019

https://labjack.com/support/software/api/ljm/ljmereconnectfailed
https://labjack.com/support/software/api/ljm/constants/SpecificIPsConfigs
https://labjack.com/support/software/api/ljm/function-reference/ljmlistall
https://labjack.com/support/app-notes/device-not-found
https://labjack.com/support/app-notes/wifi-and-ethernet-t7-t4-t7-pro
https://labjack.com/support/faq/what-driverlibrary-should-i-use-my-labjack

Identifier [in]
A string that may identify the device to be connected. To open any device, use LJM_idANY (or the string "ANY"). To specify an identifier, use a serial
number, IP address, or device name. See Identifier Parameter for more information. If you don't have a device available, you can use
LJM_DEMO_MODE (or the string "-2") to open a fake device.

Handle [out]
The new handle that represents the device connection.

Returns

LJM errorcode or 0 for no error.

Related Functions

LJM_Open and LJM_OpenS are essentially the same, except that LJM_OpenS uses string parameters for DeviceType and ConnectionType rather than
integer parameters.

See LJM_GetHandleInfo to retrieve information about a handle.

See LJM_ListAll or LJM_ListAllS to find multiple devices.

Remarks

See the notes in Opening and Closing.

When the ConnectionType parameter of this function is network-based, this function will check the IP addresses listed in LJM_SPECIAL_ADDRESSES_FILE.

Examples

[C/C++] Opening the first found T7, using LJM_Open

int LJMError;
int handle;
LJMError = LJM_Open(7, 0, "ANY", &handle);

2.1.2 - OpenS
Opens a desired LabJack and associates a device handle number (connection ID). The device handle may then be passed as an input to other functions.

Syntax

LJM_ERROR_RETURN LJM_OpenS(
 const char * DeviceType,
 const char * ConnectionType,
 const char * Identifier,
 int * Handle)

Parameters

DeviceType [in]
A string containing the type of the device to be connected:
"ANY" - Open any supported LabJack device type
"T4" - Open a T4 device
"T7" - Open a T7-series device
"TSERIES" - Open a T4 or T7
"DIGIT" - Open a Digit-series device

For other LabJack devices, see What driver/library should I use with my LabJack?

ConnectionType [in]
A string containing the type of connection desired (USB or TCP):
"ANY", "USB", "TCP", "ETHERNET", or "WIFI"
Additional UDP options:
"NETWORK_UDP", "ETHERNET_UDP", "WIFI_UDP"
Additional TCP or UDP options:
"NETWORK_ANY", "ETHERNET_ANY", "WIFI_ANY"

Identifier [in]
A string that may identify the device to be connected. To open any device, use LJM_idANY (or the string "ANY"). To specify an identifier, use a serial
number, IP address, or device name. See Identifier Parameter for more information. If you don't have a device available, you can use
LJM_DEMO_MODE (or the string "-2") to open a fake device.

Handle [out]
The new handle that represents the device connection.

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/opening-and-closing/identifier-parameter
https://labjack.com/support/software/api/ljm/demo-mode
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/ljm/users-guide/function-reference/ljmgethandleinfo
https://labjack.com/support/ljm/users-guide/function-reference/ljmlistall
https://labjack.com/support/ljm/users-guide/function-reference/ljmlistalls
https://labjack.com/support/ljm/users-guide/function-reference/opening-and-closing
https://labjack.com/support/software/api/ljm/constants/ljmspecialaddressesfile
https://labjack.com/support/faq/what-driverlibrary-should-i-use-my-labjack
https://labjack.com/support/ljm/users-guide/function-reference/opening-and-closing/identifier-parameter
https://labjack.com/support/software/api/ljm/demo-mode

Returns

LJM errorcode or 0 for no error.

Relevant Functions

LJM_OpenS and LJM_Open are essentially the same, except that LJM_Open uses integer parameters for DeviceType and ConnectionType rather than string
parameters.

See LJM_GetHandleInfo to retrieve information about a handle.

See LJM_ListAll or LJM_ListAllS to find multiple devices.

Remarks

See the notes in Opening and Closing.

When the ConnectionType parameter of this function is network-based, this function will check the IP addresses listed in LJM_SPECIAL_ADDRESSES_FILE.

Examples

[C#] Opening a T7 via TCP using LJM_OpenS

int LJMError;
int handle;
LJMError = LabJack.LJM.OpenS("T7", "Ethernet", "ANY", ref handle);

[C/C++] Opening a T7 via TCP using LJM_OpenS

int LJMError;
int handle;
LJMError = LJM_OpenS("T7", "TCP", "ANY", &handle);

2.1.2.1 - Identifier Parameter
This page describes the Identifier parameter that is used in LJM_Open and LJM_OpenS.

Common Usage

To Open Any Device (Ignore Identifier):
Use the constant LJM_idANY or the string "ANY".

To Open By Serial Number:
Specify the serial number with numbers only. For example: "470010103".

To Open By IP Address:
Specify the decimal-dot IP address numbers and periods only. For example: "192.168.1.207".
To open by hexadecimal IP address, see "Hex vs. Decimal IP Address" below.

To Open By Device Name:
Specify the device name with letters and numbers only. For example: "My Number 1 Favorite DAQ Device". Device names may be up to 49
characters in length, not including the null-terminator character, and must contain at least one letter (to prevent ambiguity between device name
and serial number).

Network-Specific

Specifying the Port

TCP/UDP port can be specified by appending a colon and the port number. For example, if your Identifier is the IP address 192.168.1.42 and you want to
connect to port 502, your Identifier would be "192.168.1.42:502".

Most users should not need to specify the TCP/UDP port.

Hex vs. Decimal IP Address

LJM assumes IP addresses to be decimal, unless they specifically look hexadecimal. To use a hex IP address, append "0x" to the IP address and write it with
a dot between each byte.

For example, for the hexadecimal IP address C0A8012A can be passed as Identifier as "0xC0.A8.01.2A". (An Identifier like "C0.A8.01.2A" would be interpreted
as a hex IP address because it contains letters, but it is highly recommended to use the "0x" prefix anyway.)

Any port specified will still be interpreted as a decimal number.

USB-Specific

Specifying the Pipe

31 Jul 2019

https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmgethandleinfo
https://labjack.com/support/ljm/users-guide/function-reference/ljmlistall
https://labjack.com/support/ljm/users-guide/function-reference/ljmlistalls
https://labjack.com/support/ljm/users-guide/function-reference/opening-and-closing
https://labjack.com/support/software/api/ljm/constants/ljmspecialaddressesfile
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens

For USB, pipe can be specified by appending a colon and the pipe number. For example, if your Identifier is the serial number 470010117 and you want to
connect to pipe 0, your Identifier would be "470010117:0".

Most users should not need to specify the USB pipe.

No Device

If you don't have a device available, you can use LJM_DEMO_MODE (or the string "-2") to open a fake device. For more details, see Demo Mode.

2.1.3 - Close
Add new comment

Closing a handle will remove the associated device connection from the LJM library, free the device to be opened again, and free allocated system resources.

Syntax

LJM_ERROR_RETURN LJM_Close(int Handle)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open, or LJM_OpenS.

Returns

LJM errorcode or 0 for no error.

Remarks

LJM_Close is useful when multiple LabJack device connections are open and only a single connection needs to be closed. Use LJM_CloseAll to close every
device in a single function call.

Examples

[C#] Closing one device

int LJMError;
//handle from LJM_Open()
LJMError = LabJack.LJM.Close(handle);

[C/C++] Closing one device

int LJMError;
//handle from LJM_Open()
LJMError = LJM_Close(handle);

2.1.4 - CloseAll
Closing all devices will remove all device handles from the LJM library, free all previously open devices to be opened again, and free allocated system
resources.

Syntax

LJM_ERROR_RETURN LJM_CloseAll()

Parameters

None

Returns

LJM errorcode or 0 for no error.

Remarks

LJM_CloseAll is useful on program exit. Use LJM_Close to close an individual device handle.

Examples

[C/C++] Closing all open devices

int LJMError;
LJMError = LJM_CloseAll();

31 Jul 2019

https://labjack.com/support/software/api/ljm/demo-mode
https://labjack.com/support/software/api/ljm/function-reference/ljmclose#comment-form
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmcloseall
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmclose

2.2 - Single Value Functions
Summary

To access device data one value at a time, use the following functions. See the Modbus map to see what values can be accessed.

Name Functions

Name functions access data by a name, such as "AIN5" for analog input 5.

LJM_eWriteName - Write one value specified, by name.
LJM_eReadName - Read one value specified, by name.
LJM_eWriteNameString - Write one string value, specified by name.
LJM_eReadNameString - Read one string value, specified by name.

Address Functions

Address functions access data by an address and data type. For example, analog input 5 ("AIN5") would have address 10 and a 32-bit floating point type.

LJM_eWriteAddress - Write one value, specified by address/type.
LJM_eReadAddress - Read one value, specified by address/type.
LJM_eWriteAddressString - Write one string value, specified by address.
LJM_eReadAddressString - Read one string value, specified by address.

Need to read or write multiple values at once? Use the Multiple Value Functions.

2.2.1 - eWriteName
Add new comment

Write one value, specified by name.

Syntax

LJM_ERROR_RETURN LJM_eWriteName(
 int Handle,
 const char * Name,
 double Value)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

Name [in]
The name that specifies the Modbus register(s) to write. Names can be found throughout the device datasheet or in the Modbus Map.

Value [in]
The value to send to the device.

Returns

LJM errorcodes or 0 for no error.

Remarks

For an alternate function using an address rather than name, see LJM_eWriteAddress. More code examples coming soon.

Example

[C/C++] Write a value of 2.5V to the DAC0 analog output

int LJMError;

// handle comes from LJM_Open()
LJMError = LJM_eWriteName(handle, "DAC0", 2.5);
if (LJMError != LJME_NOERROR) {
 // Deal with error
}

2.2.2 - eReadName

31 Jul 2019

https://labjack.com/support/modbus/map
https://labjack.com/support/ljm/users-guide/function-reference/ljmewritename
https://labjack.com/support/ljm/users-guide/function-reference/ljmereadname
https://labjack.com/support/ljm/users-guide/function-reference/ljmewritenamestring
https://labjack.com/support/ljm/users-guide/function-reference/ljmereadnamestring
https://labjack.com/support/ljm/users-guide/function-reference/ljmewriteaddress
https://labjack.com/support/ljm/users-guide/function-reference/ljmereadaddress
https://labjack.com/support/ljm/users-guide/function-reference/ljmewriteaddressstring
https://labjack.com/support/ljm/users-guide/function-reference/ljmereadaddressstring
https://labjack.com/support/ljm/users-guide/function-reference/multiple-value-functions
https://labjack.com/support/software/api/ljm/function-reference/ljmewritename#comment-form
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/modbus/map
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmewriteaddress

Read one value, specified by name.

Syntax

LJM_ERROR_RETURN LJM_eReadName(
 int Handle,
 const char * Name,
 double * Value)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

Name [in]
The name that specifies the Modbus register(s) to read. Names can be found throughout the device datasheet or in the Modbus Map.

Value [out]
The value returned from the device.

Returns

LJM errorcodes or 0 for no error.

Remarks

For an alternate function using an address rather than name, see LJM_eReadAddress. More code examples coming soon.

Example

[C/C++] Read the serial number of the device.

int LJMError;
double newValue;

// handle comes from LJM_Open()
LJMError = LJM_eReadName(handle, "SERIAL_NUMBER", &newValue);
if (LJMError != LJME_NOERROR) {
 // Deal with error
}
printf("SERIAL_NUMBER: %f\n", newValue);

2.2.3 - eWriteAddress
Write one value, specified by address.

Syntax

LJM_ERROR_RETURN LJM_eWriteAddress(
 int Handle,
 int Address,
 int Type,
 double Value)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

Address [in]
The address that specifies the Modbus register(s) to write. Addresses can be found throughout the device datasheet or in the Modbus Map.

Type [in]
The data type of the value:

Type LJM Constant Name LJM Constant Value

unsigned 16-bit integer LJM_UINT16 0

unsigned 32-bit integer LJM_UINT32 1

signed 32-bit integer LJM_INT32 2

floating point 32-bit LJM_FLOAT32 3

Value [in]
The value to send to the device. The input data type is a double, and will be converted according to the Type input.

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/modbus/map
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmereadaddress
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/modbus/map

Returns

LJM errorcodes or 0 for no error.

Remarks

For an alternate function using a name rather than address, see LJM_eWriteName.

Examples

[C/C++] Write a value of 2.5V to the DAC0 analog output.

int LJMError;

// handle comes from LJM_Open()
LJMError = LJM_eWriteAddress(handle, 1000, 3, 2.5);
if (LJMError != LJME_NOERROR) {
 // Deal with error
}

2.2.4 - eReadAddress
Read one value, specified by address.

Syntax

LJM_ERROR_RETURN LJM_eReadAddress(
 int Handle,
 int Address,
 int Type,
 double * Value)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

Address [in]
The address that specifies the Modbus register(s) to read. Addresses can be found throughout the device datasheet or in the Modbus Map.

Type [in]
The data type of the value:

Type LJM Constant Name LJM Constant Value

unsigned 16-bit integer LJM_UINT16 0

unsigned 32-bit integer LJM_UINT32 1

signed 32-bit integer LJM_INT32 2

floating point 32-bit LJM_FLOAT32 3

Value [out]
The value returned from the device. The output data type is a double, and will be converted according to the Type input.

Returns

LJM errorcodes or 0 for no error.

Remarks

For an alternate function using a name rather than address, see LJM_eReadName. More code examples coming soon.

Examples

[C/C++] Read the serial number of the device.

int LJMError;
double newValue;

// handle comes from LJM_Open()
LJMError = LJM_eReadAddress(handle, 60028, 1, &newValue);
if (LJMError != LJME_NOERROR) {
 // Deal with error
}
printf("SERIAL_NUMBER: %f\n", newValue);

31 Jul 2019

https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmewritename
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/modbus/map
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmereadname

2.2.5 - eWriteNameString
Writes a string, specified by name.

Syntax

LJM_ERROR_RETURN LJM_eWriteNameString(
 int Handle,
 const char * Name,
 const char * String)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

Name [in]
The name that specifies the Modbus string-type register to write. Names can be found throughout the device datasheet or in the Modbus Map.

String [in]
The string to write. Must null-terminate at size LJM_STRING_ALLOCATION_SIZE (50) or less.

Returns

LJM errorcodes or 0 for no error.

Remarks

See also LJM_eReadNameString. This is a convenience function that uses LJM_eNames. Only for use with Modbus register(s) listed as type LJM_STRING
(98). More code examples coming soon.

Examples

[C/C++] Change the device name.

int LJMError;
// LJM_STRING_ALLOCATION_SIZE is 50
char newName[LJM_STRING_ALLOCATION_SIZE] = "My Favorite DAQ Device";

// handle comes from LJM_Open()
LJMError = LJM_eWriteNameString(handle, "DEVICE_NAME_DEFAULT", newName);
if (LJMError != LJME_NOERROR) {
 // Deal with error
}

2.2.6 - eReadNameString
Reads a string, specified by name.

Syntax

LJM_ERROR_RETURN LJM_eReadNameString(
 int Handle,
 const char * Name,
 char * String)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

Name [in]
The name that specifies the Modbus string-type register to read. Names can be found throughout the device datasheet or in the Modbus Map.

String [out]
A string that is updated to contain the result of the read. Must be allocated to size LJM_STRING_ALLOCATION_SIZE (50) or greater prior to calling this
function.

Returns

LJM errorcodes or 0 for no error.

Remarks

See also LJM_eWriteNameString. This is a convenience function that uses LJM_eNames. Only for use with Modbus register(s) listed as type LJM_STRING
(98).

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/modbus/map
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmereadnamestring
https://labjack.com/support/ljm/users-guide/function-reference/ljmenames
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/modbus/map
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmewritenamestring
https://labjack.com/support/ljm/users-guide/function-reference/ljmenames

Examples

[C/C++] Read the device name.

int LJMError;
// LJM_STRING_ALLOCATION_SIZE is 50
char devName[LJM_STRING_ALLOCATION_SIZE];

// handle comes from LJM_Open()
LJMError = LJM_eReadNameString(handle, "DEVICE_NAME_DEFAULT", devName);
if (LJMError != LJME_NOERROR) {
 // Deal with error
}
printf ("%s \n", devName);

2.2.7 - eWriteAddressString
Writes a string, specified by address.

Syntax

LJM_ERROR_RETURN LJM_eWriteAddressString(
 int Handle,
 int Address,
 const char * String)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

Address [in]
The address that specifies the Modbus string-type register to write. Addresses can be found throughout the device datasheet or in the Modbus Map.

String [in]
The string to write. Must null-terminate at size LJM_STRING_ALLOCATION_SIZE (50) or less.

Returns

LJM errorcodes or 0 for no error.

Remarks

See also LJM_eReadAddressString. This is a convenience function that uses LJM_eAddresses. Only for use with Modbus registers listed as type
LJM_STRING (98). More code examples coming soon.

Examples

[C/C++] Change the device name.

int LJMError;
// LJM_STRING_ALLOCATION_SIZE is 50
char newName[LJM_STRING_ALLOCATION_SIZE] = "My Favorite DAQ Device";

// handle comes from LJM_Open()
LJMError = LJM_eWriteAddressString(handle, 60500, newName);
if (LJMError != LJME_NOERROR) {
 // Deal with error
}

2.2.8 - eReadAddressString
Reads a string, specified by address.

Syntax

LJM_ERROR_RETURN LJM_eReadAddressString(
 int Handle,
 int Address,
 char * String)

Parameters

Handle [in]A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

Name [in]
The address that specifies the Modbus string-type register to read. Addresses can be found throughout the device datasheet or in the Modbus Map.

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/modbus/map
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmereadaddressstring
https://labjack.com/support/ljm/users-guide/function-reference/ljmeaddresses
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/modbus/map

String [out]
A string that is updated to contain the result of the read. Must be allocated to size LJM_STRING_ALLOCATION_SIZE (50) or greater prior to calling this
function.

Returns

LJM errorcodes or 0 for no error.

Remarks

See also LJM_eWriteAddressString. This is a convenience function that uses LJM_eAddresses. Only for use with Modbus registers listed as type
LJM_STRING (98).

Examples

[C/C++] Read the device name.

int LJMError;
// LJM_STRING_ALLOCATION_SIZE is 50
char devName[LJM_STRING_ALLOCATION_SIZE];

// handle comes from LJM_Open()
LJMError = LJM_eReadAddressString(handle, 60500, devName);
if (LJMError != LJME_NOERROR) {
 // Deal with error
}
printf ("%s \n", devName);

2.3 - Multiple Value Functions
Summary

To access device data multiple values at once, use the following functions. See the Modbus map to see what values can be accessed.

Name Functions

Name functions access data through a name, such as "AIN5" for analog input 5.

LJM_eWriteNames - Write one value each to multiple names.

LJM_eReadNames - Read one value each from multiple names.
LJM_eWriteNameArray - Write consecutive values, specified by name.
LJM_eReadNameArray - Read consecutive values, specified by name.
LJM_eWriteNameByteArray - Write consecutive bytes, specified by name.
LJM_eReadNameByteArray - Read consecutive bytes, specified by name.
LJM_eNames - Write/read values, specified by names and array sizes.

Address Functions

Address functions access data through an address, such as 10 for analog input 5.

LJM_eWriteAddresses - Write one value each to multiple addresses.
LJM_eReadAddresses - Read one value each from multiple addresses.
LJM_eWriteAddressArray - Write consecutive values specified, by address.
LJM_eReadAddressArray - Read consecutive values specified, by address.
LJM_eWriteAddressByteArray - Write consecutive bytes, specified by address.
LJM_eReadAddressByteArray - Read consecutive bytes, specified by address.
LJM_eAddresses - Write/Read values, specified by addresses and array sizes.

LJM automatically splits operations into multiple packets as needed

If an LJM multiple value function is passed a large enough number of read and/or write operations, it will split the reads and writes into separate packets. By
default, LJM uses the custom Modbus Feedback command, which can perform both reads and writes.

If a multiple value function is split into multiple packets, it can affect the timing of samples and/or commands. It can also increase the latency of operations. For
approximate data rates, see T-series Data Rates.

Maximum packet sizes per connection type:

T-series USB
T-series Ethernet
T-series WiFi

Checking how many packets are required for a particular set of operations

You can use the LJM debug log with LJM_DEBUG_LOG_LEVEL set to LJM_PACKET or lower to check how LJM sends operations to the device.

31 Jul 2019

https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmewriteaddressstring
https://labjack.com/support/ljm/users-guide/function-reference/ljmeaddresses
https://labjack.com/support/modbus/map
https://labjack.com/support/ljm/users-guide/function-reference/ljmewritenames
https://labjack.com/support/ljm/users-guide/function-reference/ljmereadnames
https://labjack.com/support/ljm/users-guide/function-reference/ljmewritenamearray
https://labjack.com/support/ljm/users-guide/function-reference/ljmereadnamearray
https://labjack.com/support/software/api/ljm/function-reference/ljmewritenamebytearray
https://labjack.com/support/software/api/ljm/function-reference/ljmereadnamebytearray
https://labjack.com/support/ljm/users-guide/function-reference/ljmenames
https://labjack.com/support/ljm/users-guide/function-reference/ljmewriteaddresses
https://labjack.com/support/ljm/users-guide/function-reference/ljmereadaddresses
https://labjack.com/support/ljm/users-guide/function-reference/ljmewriteaddressarray
https://labjack.com/support/ljm/users-guide/function-reference/ljmereadaddressarray
https://labjack.com/support/software/api/ljm/function-reference/ljmewriteaddressbytearray
https://labjack.com/support/software/api/ljm/function-reference/ljmereadaddressbytearray
https://labjack.com/support/ljm/users-guide/function-reference/ljmeaddresses
https://labjack.com/support/datasheets/t-series/appendix-a-1
https://labjack.com/support/datasheets/t-series/usb
https://labjack.com/support/datasheets/t-series/ethernet
https://labjack.com/support/datasheets/t-series/wifi
https://labjack.com/support/software/api/ljm/function-reference/debugging-functions

To manually calculate how many packets will be sent:

Modbus Feedback takes 8 packet header bytes—for the command (to the device) as well as for the response (from the device).
Each Modbus Feedback command packet contains one or more frames:

Each command Feedback frame has 4 header bytes.
Within each command Feedback frame, each address being written has an appropriate number data bytes.

(Each 16-bit value being written consists of 2 data bytes; each 32-bit value being written consists of 4 bytes; etc.)
Each response has an appropriate number of data bytes.

(Each 16-bit address that was read consists of 2 data bytes; each 32-bit value that was read consists of 4 data bytes; etc.)
More information:

Modbus Feedback protocol

LJM compresses reads/writes of consecutive addresses

In addition, LJM will automatically "compress" multiple consecutive reads or writes. For example, if you read analog inputs 0 through 13 (in the ordering
of AIN0, AIN1, ..., AIN13) and a write to DAC0, LJM will compress the reads into one Modbus Feedback read frame, which takes 4 frame header bytes. For a
USB connection to T4s and T7s—which has a 64-byte maximum packet size—this set of operations would take one packet:

Command packet:
8 header bytes
4-byte frame header for reading 14 32-bit values starting at AIN0's address (AIN0 through AIN13)
4-byte frame header for writing one 32-bit value at DAC0's address
4-bytes of data for the value being written to DAC0

Response packet:
8 header bytes
56 bytes of data for the values read from AIN0 through AIN13

Without compression and a 64-byte maximum packet size, the above operations would take multiple packets—the 14 frames for reading AIN0 through
AIN13 would need 56 bytes. After the header's 8 bytes, there would be no room left for the DAC0 bytes.

Large responses can cause multiple packets

If the response is larger than the maximum packet size, it causes the command to be split. For example, reading 15 contiguous analog inputs from a T4 via
USB requires two command packets, each with a response:

First command/response:
Command packet:

8 header bytes
4-byte frame header for reading 14 32-bit values starting at AIN0's address (AIN0 through AIN13)

Response packet - 64 bytes total:
8 header bytes
56 bytes of data for the values read from AIN0 through AIN13

Second command/response:
Command packet:

8 header bytes
4-byte frame header for reading one 32-bit value at AIN14's address

Response packet:
8 header bytes
4 bytes of data for the value read from AIN14

LJM sends one command at a time

Each commands-response is synchronous with the next, so LJM sends one command packet and waits for the response before sending another command
packet.

LJM follows the specified order of reads/writes

LJM will not reorder operations to minimize the number of packets sent. If AIN1 is read then AIN0 is read, LJM will not compress them into a single command
frame because that would cause AIN0 to be read before AIN1.

2.3.1 - eWriteNames
Add new comment

Write multiple values, specified by name.

Syntax

LJM_ERROR_RETURN LJM_eWriteNames(
 int Handle,
 int NumFrames,
 const char ** aNames,
 const double * aValues,
 int * ErrorAddress)

Parameters

31 Jul 2019

https://labjack.com/support/software/api/modbus/protocol-details
https://labjack.com/support/software/api/ljm/function-reference/ljmewritenames#comment-form

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

NumFrames [in]
The total number of frames to access. A frame consists of one value, so the number of frames is the size of the aNames array.

aNames [in]
An array of names that specify the Modbus register(s) to write. Names can be found throughout the device datasheet or in the Modbus Map.

aValues [in]
An array of values to send to the device. The array size should be the same as the aNames array. The input data type of each value is a double, and will
be converted into the correct data type automatically.

ErrorAddress [out]
If error, the address responsible for causing an error.

Returns

LJM errorcodes or 0 for no error.

Remarks

This function is commonly used to write a handful of values at once, and is more convenient than LJM_eWriteAddresses because it is not necessary to know
the data type. More code examples coming soon.

Examples

[C/C++] Change digital I/O 0, 1, and 2 to output high, and digital I/O 6 to output low.

int LJMError;
int errorAddress;
const char * aNames[4] = {"FIO0", "FIO1", "FIO2", "FIO6"};
double aValues[4] = {1, 1, 1, 0};

// handle comes from LJM_Open()
LJMError = LJM_eWriteNames(handle, 4, aNames, aValues, &errorAddress);
if (LJMError != LJME_NOERROR) {
 // Deal with error
}

2.3.2 - eReadNames
Read multiple values, specified by name.

Syntax

LJM_ERROR_RETURN LJM_eReadNames(
 int Handle,
 int NumFrames,
 const char ** aNames,
 double * aValues,
 int * ErrorAddress)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

NumFrames [in]
The total number of frames to access. A frame consists of one value, so the number of frames is the size of the aNames array.

aNames [in]
An array of names that specify the Modbus register(s) to write. Names can be found throughout the device datasheet or in the Modbus Map.

aValues [out]
An array of values received from the device. The array size should be same as the aNames array. The values will be converted into doubles
automatically.

ErrorAddress [out]
If error, the address responsible for causing an error.

Returns

LJM errorcodes or 0 for no error.

Remarks

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/modbus/map
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmewriteaddresses
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/modbus/map
https://labjack.com/support/ljm/users-guide/error-codes

This function is commonly used to read a handful of values at once, and is more convenient than LJM_eReadAddresses because it is not necessary to know
the data type. More code examples coming soon.

Examples

[C/C++] Reading analog inputs 5, 6, and 10.

int LJMError;
int errorAddress;
const char * aNames[3] = {"AIN5", "AIN6", "AIN10"};
double ainValues[3];
double ain5;
double ain6;
double ain10;

// handle comes from LJM_Open()
LJMError = LJM_eReadNames(handle, 3, aNames, ainValues, &errorAddress);
if (LJMError != LJME_NOERROR) {
 // Deal with error
}
ain5 = ainValues[0];
ain6 = ainValues[1];
ain10 = ainValues[2];

2.3.3 - eWriteAddresses
Write multiple values, specified by address.

Syntax

LJM_ERROR_RETURN LJM_eWriteAddresses(
 int Handle,
 int NumFrames,
 const int * aAddresses,
 const int * aTypes,
 const double * aValues,
 int * ErrorAddress)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

NumFrames [in]
The total number of frames to access. A frame consists of one value, so the number of frames is the size of the aAddresses array.

aAddresses [in]
An array of addresses that specify the Modbus register(s) to write. Addresses can be found throughout the device datasheet or in the Modbus Map.

aTypes [in]
An array containing the data type of each value:

Type LJM Constant Name LJM Constant Value

unsigned 16-bit integer LJM_UINT16 0

unsigned 32-bit integer LJM_UINT32 1

signed 32-bit integer LJM_INT32 2

floating point 32-bit LJM_FLOAT32 3

aValues [in]
An array of values to send to the device. The array size should be the size of the aAddresses array. The input data type of each value is a double, and
they will be converted into the data type entered in aTypes.

ErrorAddress [out]
If error, the address responsible for causing an error.

Returns

LJM errorcodes or 0 for no error.

Remarks

This function is used to write a handful of values at once, and is useful in programming languages that are not friendly towards the usage of strings. For
programming languages that can use strings easily, see LJM_eWriteNames. More code examples coming soon.

Examples

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/ljmereadaddresses
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/modbus/map
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmewritenames

[C/C++] Change digital I/O 0, 1, and 2 to output high, and digital I/O 6 to output low.

int LJMError;
int errorAddress;
int aAddresses[4] = {2000, 2001, 2002, 2006};
int aTypes[4] = {0, 0, 0, 0};
double aValues[4] = {1, 1, 1, 0};

// handle comes from LJM_Open()
LJMError = LJM_eWriteAddresses(handle, 4, aAddresses, aTypes, aValues, &errorAddress);
if (LJMError != LJME_NOERROR) {
 // Deal with error
}

2.3.4 - eReadAddresses
Read multiple values, specified by address.

Syntax

LJM_ERROR_RETURN LJM_eReadAddresses(
 int Handle,
 int NumFrames,
 const int * aAddresses,
 const int * aTypes,
 double * aValues,
 int * ErrorAddress)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

NumFrames [in]
The total number of frames to access. A frame consists of one value, so the number of frames is the size of the aAddresses array.

aAddresses [in]
An array of addresses that specify the Modbus register(s) to read. Addresses can be found throughout the device datasheet or in the Modbus Map.

aTypes [in]
An array containing the data type of each value:

Type LJM Constant Name LJM Constant Value

unsigned 16-bit integer LJM_UINT16 0

unsigned 32-bit integer LJM_UINT32 1

signed 32-bit integer LJM_INT32 2

floating point 32-bit LJM_FLOAT32 3

aValues [out]
An array of values received from the device. The array size should be the size of the aAddresses array. The output data type of each value is a double,
and they will be converted from the data type entered in aTypes.

ErrorAddress [out]
If error, the address responsible for causing an error.

Returns

LJM errorcodes or 0 for no error.

Remarks

This function is used to read a handful of values at once, and is useful in programming languages that are not friendly towards the usage of strings. For
programming languages that can use strings easily, see LJM_eReadNames. More code examples coming soon.

Examples

[C/C++] Reading analog inputs 5, 6, and 10.

int LJMError;
int errorAddress;
int aAddresses[3] = {10, 12, 20};
int aTypes[3] = {3, 3, 3};
double ainValues[3];
double ain5;
double ain6;

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/modbus/map
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmereadnames

double ain10;

// handle comes from LJM_Open()
LJMError = LJM_eReadAddresses(handle, 3, aAddresses, aTypes, ainValues, &errorAddress);
if (LJMError != LJME_NOERROR) {
 // Deal with error
}
ain5 = ainValues[0];
ain6 = ainValues[1];
ain10 = ainValues[2];

2.3.5 - eNames
Write/Read multiple values, specified by name. This function is designed to condense communication into arrays. Moreover, consecutive values can be
accessed by specifying a starting name, and a number of values.

Syntax

LJM_ERROR_RETURN LJM_eNames(
 int Handle,
 int NumFrames,
 const char ** aNames,
 const int * aWrites,
 const int * aNumValues,
 double * aValues,
 int * ErrorAddress)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

NumFrames [in]
The total number of frames to access. A frame consists of one or more values, based on NumValues.

aNames [in]
An array of names that specify the Modbus register(s) to write/read. To access a consecutive group of values, populate an element of the aNames array
with the starting name, and then increase the NumValues parameter according to the group size.

aWrites [in]
An array containing the desired type of access, which is either read(0) or write(1). The array size should be the same as the aNames array.

aNumValues [in]
An array that contains the per-name number of consecutive values. NumValues is 1 for non-consecutive. The array size should be the same as the
aNames array.

aValues [in/out]
An array of values transferred to/from the device. The array size should be the sum of all elements in the aNumValues array. For values in the array that
are being sent, data is automatically converted into the correct data type. For incoming values, data is converted to a double automatically.

ErrorAddress [out]
If error, the address responsible for causing an error.

Returns

LJM errorcodes or 0 for no error.

Remarks

LJM_eNames is for programs that need to write and read multiple, arbitrary values in a single function call. For example, a PID loop may read inputs and set
outputs in a single function call. In this way, the communication overhead is reduced. There are simpler single value functions and simpler multiple value
functions for programs that do not need such a level of communication optimization.

To use LJM_eNames:

1. List of values that need to be accessed.
2. Decide how each value will be accessed: read or write.
3. Note values which are consecutive and have the same access (read or write). Only use the first name in a consecutive group and increase the

NumValues parameter according to the group size.
4. Define NumFrames by counting all the values to access (step 1), then subtract consecutive values already accounted for in NumValues (step 3).
5. Insert data to be written to the device at the appropriate index of aValues.
6. Read data from aValues array after function is executed.

As an example of the above use-case, consider reading AIN0-2, setting DAC0 to 4.6V, and reading the state of DIO4.

1. Values that need to be accessed: [AIN0, AIN1, AIN2, DAC0, DIO4]
2. Reading the first 3 values, writing to the 4th value, and reading from the 5th [R, R, R, W, R]
3. Seeing that the first 3 values are consecutive and are all being read, the situation can be simplified. The array size of aNames, aTypes, and aWrites is

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/software/api/ljm/function-reference/single-value-functions
https://labjack.com/support/software/api/ljm/function-reference/multiple-value-functions

reduced.
1. aNames = [AIN0, DAC0, DIO4]
2. aWrites = [LJM_READ, LJM_WRITE, LJM_READ] - LJM_READ is 0; LJM_WRITE is 1.
3. aNumValues = [3, 1, 1] - The number of values is increased for the first frame only.

4. The number of frames is 3
5. Set the analog output voltage to 4.6V by setting the fourth value. aValues = [0, 0, 0, 4.6, 0]
6. Read the first three values of aValues to get AIN0 through AIN2; read the fifth value to get FIO4

Examples

[C/C++] Read analog inputs 0 through 2, set DAC0 to 4.6V, and read FIO4

int LJMError;
int errorAddress;
const char * aNames[3] = {"AIN0", "DAC0", "FIO4"};
int aWrites[3] = {LJM_READ, LJM_WRITE, LJM_READ};
int aNumValues[3] = {3, 1, 1};
double aValues[5];
aValues[3] = 4.6;

// handle comes from LJM_Open()
LJMError = LJM_eNames(handle, 3, aNames, aWrites, aNumValues, aValues, &errorAddress);
if (LJMError != LJME_NOERROR) {
 // Deal with error
}
printf("AIN0: %f\n", aValues[0]);
printf("AIN1: %f\n", aValues[1]);
printf("AIN2: %f\n", aValues[2]);
printf("FIO4: %f\n", aValues[4]);

2.3.6 - eAddresses
Write/Read multiple values, specified by address. This function is designed to condense communication into arrays. Moreover, consecutive values can be
accessed by specifying a starting address, and a number of values.

Syntax

LJM_ERROR_RETURN LJM_eAddresses(
 int Handle,
 int NumFrames,
 const int * aAddresses,
 const int * aTypes,
 const int * aWrites,
 const int * aNumValues,
 double * aValues,
 int * ErrorAddress)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

NumFrames [in]
The total number of frames to access. A frame consists of one or more values, based on NumValues.

aAddresses [in]
An array of addresses that specify the Modbus register(s) to write/read. To access a consecutive group of values, populate an element of aAddresses
array with the starting address, and then increase the NumValues parameter according to the group size.

aTypes [in]
An array of size NumFrames, containing the data type of each value sent/received:

Type LJM Constant Name LJM Constant Value

unsigned 16-bit integer LJM_UINT16 0

unsigned 32-bit integer LJM_UINT32 1

signed 32-bit integer LJM_INT32 2

floating point 32-bit LJM_FLOAT32 3

aWrites [in]
An array containing the desired type of access, which is either read(0) or write(1). The array size should be the same as the aAddresses array.

aNumValues [in]
An array that contains the per-address number of consecutive values. NumValues is 1 for non-consecutive. The array size should be the same as the
aAddresses array.

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens

aValues [in/out]
An array of values to be transferred to/from the device. The array size should be the sum of all elements in the aNumValues array. Each value will be
converted to/from those defined in aTypes.

ErrorAddress [out]
If error, the address responsible for causing an error.

Returns

LJM errorcodes or 0 for no error.

Remarks

LJM_eAddresses is equivalent to LJM_eNames.

LJM_eAddresses is for programs that need to write and read multiple, arbitrary values in a single function call. For example, a PID loop may read inputs and
set outputs in a single function call. In this way, the communication overhead is reduced. There are simpler single value functions and simpler multiple value
functions for programs that do not need such a level of communication optimization.

To use LJM_eAddresses:

1. Create a list of values that need to be accessed.
2. Decide how each value will be accessed: read or write.
3. Note values which are consecutive and have the same access (read or write). Only use the first name in a consecutive group and increase the

NumValues parameter according to the group size.
4. Define NumFrames by counting all the values to access (step 1), then subtract consecutive values already accounted for in NumValues (step 3).
5. Insert data to be written to the device at the appropriate index of aValues.
6. Read data from aValues array after function is executed.

As an example of the above use-case, consider reading AIN0-2 (addresses 0, 2, 4), setting DAC0 (address 1000) to 4.6V, and reading the state of DIO4
(address 2004).

1. Addresses that need to be accessed: [0, 2, 4, 1000, 2004]
2. Reading the first 3 values, writing to the 4th value, and reading from the 5th [R, R, R, W, R]
3. Seeing that the first 3 values are consecutive and are all being read, the situation can be simplified. The array size of aNames, aTypes, and aWrites is

reduced.
1. aAddresses = [0, 1000, 2004]
2. aTypes = [LJM_FLOAT32, LJM_FLOAT32, LJM_UINT16] - LJM_FLOAT32 is 3; LJM_UINT16 is 0.

3. aWrites = [LJM_READ, LJM_WRITE, LJM_READ] - LJM_READ is 0; LJM_WRITE is 1.
4. aNumValues = [3, 1, 1] - The number of values is increased for the first frame only.

4. The number of frames is 3
5. Set the analog output voltage to 4.6V by setting the fourth value. aValues = [0, 0, 0, 4.6, 0]
6. Read the first three values of aValues to get AIN0 through AIN2; read the fifth value to get FIO4

Examples

[C/C++] Read analog inputs 0 through 7, set DAC0 to 4.6V, read FIO4

int LJMError;
int errorAddress;
int aAddresses[3] = {0, 1000, 2004};
int aTypes[3] = {LJM_FLOAT32, LJM_FLOAT32, LJM_UINT16};
int aWrites[3] = {LJM_READ, LJM_WRITE, LJM_READ};
int aNumValues[3] = {3, 1, 1};
double aValues[5];
aValues[3] = 4.6;

// handle comes from LJM_Open()
LJMError = LJM_eAddresses(handle, 3, aAddresses, aTypes, aWrites, aNumValues, aValues, &errorAddress);
if (LJMError != LJME_NOERROR) {
 // Deal with error
}
printf("AIN0: %f\n", aValues[0]);
printf("AIN1: %f\n", aValues[1]);
printf("AIN2: %f\n", aValues[2]);
printf("FIO4: %f\n", aValues[4]);

2.3.7 - eReadAddressArray
Add new comment

Read consecutive values, specified by an address and type.

Syntax

LJM_ERROR_RETURN LJM_eReadAddressArray(
 int Handle,
 int Address,

31 Jul 2019

https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/software/api/ljm/function-reference/ljmenames
https://labjack.com/support/software/api/ljm/function-reference/single-value-functions
https://labjack.com/support/software/api/ljm/function-reference/multiple-value-functions
https://labjack.com/support/software/api/ljm/function-reference/ljmereadaddressarray#comment-form

 int Type,
 int NumValues,
 double * aValues,
 int * ErrorAddress)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

Address [in]
The address that specifies the Modbus register(s) to read. Addresses can be found throughout the device datasheet or in the Modbus Map.

Type [in]
The data type of the value(s):

Type LJM Constant Name LJM Constant Value

unsigned 16-bit integer LJM_UINT16 0

unsigned 32-bit integer LJM_UINT32 1

signed 32-bit integer LJM_INT32 2

floating point 32-bit LJM_FLOAT32 3

NumValues [in]
The number of consecutive values to read.

aValues [out]
An array of values to be transferred from the device. The array size should be equal to NumValues. Each value will be converted according to Type.

ErrorAddress [out]
If error, the address responsible for causing an error.

Returns

LJM errorcodes or 0 for no error.

Remarks

The Name version of this function is LJM_eReadNameArray.

If NumValues is large enough, these functions will automatically split reads into multiple packets based on the current device's effective data packet size.
Using both non-buffer and buffer registers in one function call is not supported.

Examples

[C/C++] Read analog inputs 0 through 7

int LJMError;
int errorAddress;
double newValues[8];

// handle comes from LJM_Open()
LJMError = LJM_eReadAddressArray(handle, 0, LJM_FLOAT32, 8, newValues, &errorAddress);
if (LJMError != LJME_NOERROR) {
 // Deal with error
}

2.3.8 - eReadAddressByteArray
Read consecutive byte values, specified by an address.

Syntax

LJM_ERROR_RETURN LJM_eReadAddressByteArray(
 int Handle,
 int Address,
 int NumBytes,
 char * aBytes,
 int * ErrorAddress)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/modbus/map
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmereadnamearray
https://labjack.com/support/datasheets/t7/communication/modbus-map/buffer-registers
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens

Address [in]
The address that specifies the Modbus register(s) to read. Addresses can be found throughout the device datasheet or in the Modbus Map.

NumBytes [in]
The number of consecutive bytes.

aBytes [out]
An array of bytes transferred from the device. The array size should be equal to NumBytes.

ErrorAddress [out]
If error, the address responsible for causing an error.

Returns

LJM errorcodes or 0 for no error.

Remarks

The Name version of this function is LJM_eReadNameByteArray.

This function will append a 00 byte to aBytes for odd-numbered NumBytes.

If NumBytes is large enough, these functions will automatically split reads into multiple packets based on the current device's effective data packet size. Using
both non-buffer and buffer registers in one function call is not supported.

Examples

[C] Read Lua output from LUA_DEBUG_DATA

int byteIter, err;
double numBytes;
char * aBytes;
int errorAddress;
numBytes = 0;

// handle comes from LJM_Open()
err = LJM_eReadName(handle, "LUA_DEBUG_NUM_BYTES", &numBytes);
if (err != LJME_NOERROR) {
 // Deal with error
}
aBytes = malloc(sizeof(char) * (int)numBytes);
errorAddress = -2; // Something impossible for a Modbus address
err = LJM_eReadAddressByteArray(
 handle,
 6024, // LUA_DEBUG_DATA
 numBytes,
 aBytes,
 &errorAddress
);
if (err == LJME_NOERROR) {
 printf("LUA_DEBUG_DATA: ");
 for (byteIter = 0; byteIter < numBytes; byteIter++) {
 printf("%c", aBytes[byteIter]);
 }
 printf("\n");
}
free(aBytes);
if (err != LJME_NOERROR) {
 // Deal with error
}

2.3.9 - eReadNameArray
Read consecutive values, specified by a name.

Syntax

LJM_ERROR_RETURN LJM_eReadNameArray(
 int Handle,
 const char * Name,
 int NumValues,
 double * aValues,
 int * ErrorAddress)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

Name [in]
The name that specifies the Modbus register(s) to read. Names can be found throughout the device datasheet or in the Modbus Map.

31 Jul 2019

https://labjack.com/support/modbus/map
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/software/api/ljm/function-reference/ljmereadnamebytearray
https://labjack.com/support/datasheets/t7/communication/modbus-map/buffer-registers
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/modbus/map

NumValues [in]
The number of consecutive values to read.

aValues [out]
An array of values to be transferred from the device. The array size should be equal to NumValues. Each value will be converted according to the type of
Name.

ErrorAddress [out]
If error, the address responsible for causing an error.

Returns

LJM errorcodes or 0 for no error.

Remarks

The Address version of this function is LJM_eReadAddressArray.

If NumValues is large enough, these functions will automatically split reads into multiple packets based on the current device's effective data packet size.
Using both non-buffer and buffer registers in one function call is not supported.

Examples

[C/C++] Read analog inputs 0 through 7

int LJMError;
int errorAddress;
double newValues[8];

// handle comes from LJM_Open()
LJMError = LJM_eReadNameArray(handle, "AIN0", 8, newValues, &errorAddress);
if (LJMError != LJME_NOERROR) {
 // Deal with error
}

2.3.10 - eReadNameByteArray
Read consecutive byte values, specified by a name.

Syntax

LJM_ERROR_RETURN LJM_eReadNameByteArray(
 int Handle,
 const char * Name,
 int NumBytes,
 char * aBytes,
 int * ErrorAddress)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

Name [in]
The name that specifies the Modbus register(s) to read. Names can be found throughout the device datasheet or in the Modbus Map.

NumBytes [in]
The number of consecutive bytes.

aBytes [out]
An array of bytes transferred from the device. The array size should be equal to NumBytes.

ErrorAddress [out]
If error, the address responsible for causing an error.

Returns

LJM errorcodes or 0 for no error.

Remarks

LJM_eWriteNameByteArray is the reverse of LJM_eReadNameByteArray.

The Address version of this function is LJM_eReadAddressByteArray.

This function will append a 00 byte to aBytes for odd-numbered NumBytes.

If NumBytes is large enough, these functions will automatically split reads into multiple packets based on the current device's effective data packet size. Using

31 Jul 2019

https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmereadaddressarray
https://labjack.com/support/datasheets/t7/communication/modbus-map/buffer-registers
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/modbus/map
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/software/api/ljm/function-reference/ljmewritenamebytearray
https://labjack.com/support/software/api/ljm/function-reference/ljmereadaddressbytearray

both non-buffer and buffer registers in one function call is not supported.

Examples

[C] Read Lua output from LUA_DEBUG_DATA

int byteIter, err;
double numBytes;
char * aBytes;
int errorAddress;
numBytes = 0;

// handle comes from LJM_Open()
err = LJM_eReadName(handle, "LUA_DEBUG_NUM_BYTES", &numBytes);
if (err != LJME_NOERROR) {
 // Deal with error
}
aBytes = malloc(sizeof(char) * (int)numBytes);
errorAddress = -2; // Something impossible for a Modbus address
err = LJM_eReadNameByteArray(
 handle,
 "LUA_DEBUG_DATA",
 numBytes,
 aBytes,
 &errorAddress
);
if (err == LJME_NOERROR) {
 printf("LUA_DEBUG_DATA: ");
 for (byteIter = 0; byteIter < numBytes; byteIter++) {
 printf("%c", aBytes[byteIter]);
 }
 printf("\n");
}
free(aBytes);
if (err != LJME_NOERROR) {
 // Deal with error
}

2.3.11 - eWriteAddressArray
Write consecutive values, specified by an address and type.

Syntax

LJM_ERROR_RETURN LJM_eWriteAddressArray(
 int Handle,
 int Address,
 int Type,
 int NumValues,
 double * aValues,
 int * ErrorAddress)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

Address [in]
The address that specifies the Modbus register(s) to write. Addresses can be found throughout the device datasheet or in the Modbus Map.

Type [in]
The data type of the value(s):

Type LJM Constant Name LJM Constant Value

unsigned 16-bit integer LJM_UINT16 0

unsigned 32-bit integer LJM_UINT32 1

signed 32-bit integer LJM_INT32 2

floating point 32-bit LJM_FLOAT32 3

NumValues [in]
The number of consecutive values.

aValues [in]
An array of values to be transferred to the device. The array size should be equal to NumValues. Each value will be converted according to Type.

ErrorAddress [out]
If error, the address responsible for causing an error.

31 Jul 2019

https://labjack.com/support/datasheets/t7/communication/modbus-map/buffer-registers
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/modbus/map

Returns

LJM errorcodes or 0 for no error.

Remarks

The Name version of this function is LJM_eWriteNameArray.

If NumValues is large enough, these functions will automatically split writes into multiple packets based on the current device's effective data packet size.
Using both non-buffer and buffer registers in one function call is not supported.

Examples

[C/C++] Write DAC0 and DAC1 as an array

int LJMError;
int errorAddress;
double newValues[2] = {1.2, 3.4};

// handle comes from LJM_Open()
LJMError = LJM_eWriteAddressArray(handle, 1000, LJM_FLOAT32, 2, newValues, &errorAddress);
if (LJMError != LJME_NOERROR) {
 // Deal with error
}

2.3.12 - eWriteAddressByteArray
Write consecutive byte values, specified by an address.

Syntax

LJM_ERROR_RETURN LJM_eWriteAddressByteArray(
 int Handle,
 int Address,
 int NumBytes,
 const char * aBytes,
 int * ErrorAddress)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

Address [in]
The address that specifies the Modbus register(s) to write. Address can be found throughout the device datasheet or in the Modbus Map.

NumBytes [in]
The number of consecutive bytes.

aBytes [in]
An array of bytes to be transferred to the device. The array size should be equal to NumBytes.

ErrorAddress [out]
If error, the address responsible for causing an error.

Returns

LJM errorcodes or 0 for no error.

This function will append a 00 byte to aBytes for odd-numbered NumBytes.

If NumBytes is large enough, these functions will automatically split writes into multiple packets based on the current device's effective data packet size. Using
both non-buffer and buffer registers in one function call is not supported.

Remarks

The Name version of this function is LJM_eWriteNameByteArray.

Examples

[C/C++] Write a Lua script to LUA_SOURCE_WRITE

int LJMError;
int ErrorAddress;
const char * luaScript =
 "LJ.IntervalConfig(0, 1000)\n"
 "while true do\n"
 " if LJ.CheckInterval(0) then\n"

31 Jul 2019

https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmewritenamearray
https://labjack.com/support/datasheets/t7/communication/modbus-map/buffer-registers
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/modbus/map
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/datasheets/t7/communication/modbus-map/buffer-registers
https://labjack.com/support/software/api/ljm/function-reference/ljmewritenamebytearray

 " print(LJ.Tick())\n"
 " end\n"
 "end\n"
 "\0";
const unsigned scriptLength = strlen(luaScript) + 1;

// handle comes from LJM_Open()
LJMError = LJM_eWriteAddressByteArray(
 handle,
 LUA_SOURCE_WRITE_ADDRESS,
 scriptLength,
 luaScript,
 &ErrorAddress
);
if (LJMError != LJME_NOERROR) {
 // Deal with error
}

2.3.13 - eWriteNameArray
Write consecutive values, specified by a name.

Syntax

LJM_ERROR_RETURN LJM_eWriteNameArray(
 int Handle,
 const char * Name,
 int NumValues,
 double * aValues,
 int * ErrorAddress)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

Name [in]
The name that specifies the Modbus register(s) to write. Names can be found throughout the device datasheet or in the Modbus Map.

NumValues [in]
The number of consecutive values.

aValues [in]
An array of values to be transferred to the device. The array size should be equal to NumValues. Each value will be converted according to the type of
Name.

ErrorAddress [out]
If error, the address responsible for causing an error.

Returns

LJM errorcodes or 0 for no error.

Remarks

The Address version of this function is LJM_eWriteAddressArray.

If NumValues is large enough, these functions will automatically split writes into multiple packets based on the current device's effective data packet size.
Using both non-buffer and buffer registers in one function call is not supported.

Examples

[C/C++] Write DAC0 and DAC1 as an array

int LJMError;
int errorAddress;
double newValues[2] = {1.2, 3.4};

// handle comes from LJM_Open()
LJMError = LJM_eWriteNameArray(handle, "DAC0", 2, newValues, &errorAddress);
if (LJMError != LJME_NOERROR) {
 // Deal with error
}

2.3.14 - eWriteNameByteArray
Write consecutive byte values, specified by a name.

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/modbus/map
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmewriteaddressarray
https://labjack.com/support/datasheets/t7/communication/modbus-map/buffer-registers

Syntax

LJM_ERROR_RETURN LJM_eWriteNameByteArray(
 int Handle,
 const char * Name,
 int NumBytes,
 const char * aBytes,
 int * ErrorAddress)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

Name [in]
The name that specifies the Modbus register(s) to write. Names can be found throughout the device datasheet or in the Modbus Map.

NumBytes [in]
The number of consecutive bytes.

aBytes [in]
An array of bytes to be transferred to the device. The array size should be equal to NumBytes.

ErrorAddress [out]
If error, the address responsible for causing an error.

Returns

LJM errorcodes or 0 for no error.

Remarks

LJM_eReadNameByteArray is the reverse of LJM_eWriteNameByteArray.

The Address version of this function is LJM_eWriteAddressByteArray.

This function will append a 00 byte to aBytes for odd-numbered NumBytes.

If NumBytes is large enough, these functions will automatically split writes into multiple packets based on the current device's effective data packet size. Using
both non-buffer and buffer registers in one function call is not supported.

Examples

[C/C++] Write a Lua script to LUA_SOURCE_WRITE

int LJMError;
int ErrorAddress;
const char * luaScript =
 "LJ.IntervalConfig(0, 1000)\n"
 "while true do\n"
 " if LJ.CheckInterval(0) then\n"
 " print(LJ.Tick())\n"
 " end\n"
 "end\n"
 "\0";
const unsigned scriptLength = strlen(luaScript) + 1;

// handle comes from LJM_Open()
LJMError = LJM_eWriteNameByteArray(
 handle,
 "LUA_SOURCE_WRITE",
 scriptLength,
 luaScript,
 &ErrorAddress
);
if (LJMError != LJME_NOERROR) {
 // deal with error
}

2.4 - Stream Functions
Add new comment

To stream an unlimited number of scans from a device:

1. Start a stream using LJM_eStartStream
2. In a loop, read from the device stream using LJM_eStreamRead

Optionally, use LJM_SetStreamCallback instead of LJM_eStreamRead
3. End the stream using LJM_eStreamStop

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/modbus/map
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/software/api/ljm/function-reference/ljmereadnamebytearray
https://labjack.com/support/software/api/ljm/function-reference/ljmewriteaddressbytearray
https://labjack.com/support/datasheets/t7/communication/modbus-map/buffer-registers
https://labjack.com/support/software/api/ljm/function-reference/stream-functions#comment-form
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamstart
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamread
https://labjack.com/support/software/api/ljm/function-reference/ljmsetstreamcallback
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamstop

To stream a finite number of scans, use LJM_StreamBurst:

LJM_StreamBurst is a convenience function that internally performs LJM_eStreamStart, LJM_eStreamRead, and LJM_eStreamStop.

2.4.1 - eStreamStart
Add new comment

Initializes a stream object and begins streaming. This function creates a buffer in memory that holds data from the device, so that higher data throughput can
be achieved.

Syntax

LJM_ERROR_RETURN LJM_eStreamStart(
 int Handle,
 int ScansPerRead,
 int NumAddresses,
 const int * aScanList,
 double * ScanRate)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

ScansPerRead [in]
The number of scans returned by each call to the LJM_eStreamRead function.

High-throughput applications should use a large ScansPerRead to get more data per call of LJM_eStreamRead. A typical value would be equal to
ScanRate or 1/2 ScanRate, which results in a read once or twice per second, respectively.

Low-latency applications should use a smaller ScansPerRead to get less data per call of LJM_eStreamRead. This will cause eStreamRead to be called
more frequently.

The frequency LJM_eStreamRead returns data at is:

eStreamRead frequency = ScanRate / ScansPerRead

NumAddresses [in]
The number of addresses in aScanList. The size of the aScanList array.

aScanList [in]
An array of addresses to stream. The scan list is the list of data addresses that are to be buffered by LJM and returned with LJM_eStreamRead. Find
addresses in the Modbus Map. For example, to stream AIN3, add the address 6 to the scan list.

ScanRate [in/out]
A pointer that sets the desired number of scans per second. Upon successful return of this function, ScanRate will be updated to the actual scan rate that
the device will use. Keep in mind that data rate limits are specified in Samples/Second which is equal to NumAddresses * Scans/Second, or
NumAddresses * ScanRate .

Returns

LJM errorcodes or 0 for no error.

Remarks

To read data from stream, use LJM_eStreamRead. To stop stream, use LJM_eStreamStop.

Configuration

Channel configuration such as range and resolution must be handled elsewhere. Check the device datasheet for details about analog inputs and which
connection types are capable of stream.

This function writes to the following registers, which cannot be set manually when using LJM_eStreamStart:

STREAM_SCANRATE_HZ
STREAM_NUM_ADDRESSES
STREAM_SAMPLES_PER_PACKET
STREAM_AUTO_TARGET
STREAM_SCANLIST_ADDRESS#(0:127)
STREAM_ENABLE

Note that there are other T-series stream configurations.

How samples are moved from the device to your application �

31 Jul 2019

https://labjack.com/support/software/api/ljm/function-reference/ljmstreamburst
https://labjack.com/support/software/api/ljm/function-reference/ljmestreamstart#comment-form
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
#low-latency
https://labjack.com/support/modbus/map
https://labjack.com/support/datasheets/t-series/communication/stream-mode#stream-speed
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamread
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamstop
https://labjack.com/support/datasheets/t-series/communication/stream-mode
http:///tmp/wktemp-4618c05e-1ce1-46d2-b812-b5bc008895f7.html#data-movement

When stream is running, there are two sample buffers to consider: the device buffer and the LJM buffer. After starting stream:

1. The device acquires a scan of stream data at every scan interval according to its own clock and puts that data into the device buffer.
2. At the same time, LJM is running a background thread that moves data from the device buffer to the LJM buffer.
3. At the same time, the user application needs to move data from the LJM buffer to the user application—this is done using LJM_eStreamRead or

LJM_eStreamBurst.

Both the device buffer and LJM buffer are first in, first out (FIFO) buffers.

Maximum Samples Per Packet

Each connection type has a maximum number of bytes per Modbus TCP packet sent between the device and host. That determines the maximum number of
samples (given as Max Samples Per Packet below). A stream data packet has 16 bytes of overhead and each sample needs 2 bytes.

For the T4 and T7:

 Max Samples Per Packet Max bytes per packet

USB 24 64

Ethernet 512 1040

WiFi 242 500

Actual Samples Per Packet

The actual samples per USB or TCP packet is configured by LJM. This will be the smaller of either ScansPerRead * NumAddresses (the parameters of
eStreamStart) or the Max Samples Per Packet.

Samples Per Transfer

The samples per transfer is the number of samples transferred per read call. This is done automatically in the LJM background thread. This sets the interval
for how often LJM does a read. An LJM read might consist of multiple USB or TCP packets.

The samples per transfer is limited by ScansPerRead * NumAddresses and the Max Samples Per Packet.

Normally, ScansPerRead is set to a higher value because it is more efficient to move bigger chunks of data less often, but if you want minimum latency
between input/output you can set ScansPerRead as low as 1.

Externally clocked stream �

Externally clocked stream is when a signal is received on CIO3, for which each rising edge a single scan is triggered. This allows for variable scan rates and
synchronized streaming.

When using externally clocked stream, LJM_eStreamStart's ScanRate should be set to the fastest scan rate that the externally clocked stream will occur at.
This ensures that LJM will collect data fast enough, without making LJM perform busy waits for stream data. This passed ScanRate has no effect on hardware
in this case, but rather is just useful for LJM so it has an idea of expected data rate.

If externally clocked stream occurs at a variable scan rate or does not occur immediately after calling LJM_eStreamStart, you'll probably need to use an LJM
configuration to prevent LJM from throwing an error when scans are not received by LJM within the expected timeframe since LJM normally expects a
constant scan rate, and it will throw an error if it does not receive data from the device fast enough. Here are the options for setting LJM's configs for variable
speed and/or delayed start streaming, which should be set using LJM_WriteLibraryConfigS:

- Set LJM_STREAM_SCANS_RETURN to LJM_STREAM_SCANS_RETURN_ALL. This will cause LJM_eStreamRead to return immediately with the error
code LJME_NO_SCANS_RETURNED if LJM has not received ScansPerRead scans worth of data. LJM wrappers like LJM Python that throw exceptions
instead of returning error codes will throw their language-specific version of LJME_NO_SCANS_RETURNED.

- Set LJM_STREAM_RECEIVE_TIMEOUT_MS to a safe timeout for your expected stream speeds. This should be the longest expected timeout, plus a
small amount extra. If you're not sure how long of a timeout you need, 0 is the infinite timeout and will never time out.

The configs mentioned above are defined in LabJackM.h.

Triggered stream �

Hardware-Triggered

Hardware-triggered stream could also be called "delayed start stream". It is when LJM_eStreamStart has been called but stream does not start until a signal is
received on FIO0 or FIO1, after which stream continues to collect data as normal.

To use triggered stream with LJM, you must enable some LJM configurations and also some T-series configurations.

LJM triggered stream configurations that should be set using LJM_WriteLibraryConfigS:

- Set LJM_STREAM_SCANS_RETURN to LJM_STREAM_SCANS_RETURN_ALL. This will cause LJM_eStreamRead to return immediately with the
error code LJME_NO_SCANS_RETURNED if LJM has not received ScansPerRead scans worth of data. LJM wrappers like LJM Python that throw
exceptions instead of returning error codes will throw their language-specific version of LJME_NO_SCANS_RETURNED.

31 Jul 2019

#low-latency
http:///tmp/wktemp-4618c05e-1ce1-46d2-b812-b5bc008895f7.html#externally-clocked
https://labjack.com/support/datasheets/t-series/communication/stream-mode#externally-clocked
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/software/api/ljm/constants/ljmstreamscansreturn
https://labjack.com/support/software/examples/ljm/python
https://labjack.com/support/software/api/ljm/constants/ljmstreamreceivetimeoutms
http:///tmp/wktemp-4618c05e-1ce1-46d2-b812-b5bc008895f7.html#triggered
https://labjack.com/support/datasheets/t-series/communication/stream-mode#triggered
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/software/api/ljm/constants/ljmstreamscansreturn
https://labjack.com/support/software/examples/ljm/python

- Set LJM_STREAM_RECEIVE_TIMEOUT_MS to a safe timeout for how long you expect it to take before stream starts. If you're not sure how long of a
timeout you need, 0 is the infinite timeout and will never time out.

The configs mentioned above are defined in LabJackM.h.

Software-Triggered - For collecting pre-trigger data

Software-triggered stream is appropriate when pre-trigger data is required.

Software-triggered stream is when LJM_eStreamStart is called and stream immediately begins collecting data. The "trigger" point is then defined by software.
Since this depends on the application, you would essentially iterate through the aData of LJM_eStreamRead until the desired trigger criteria is met. Data
before that point is considered pre-trigger data.

Burst Stream

Burst stream is when a limited number of scans are collected by the device, after which the device stops streaming. LJM_StreamBurst may be used to
automatically perform a burst stream or burst stream may be performed manually using the following steps:

Write the desired number of scans to collect to STREAM_NUM_SCANS.
Call LJM_eStreamStart
Call LJM_eStreamRead until all STREAM_NUM_SCANS have been read or until the return code is STREAM_BURST_COMPLETE (2944)
Call LJM_eStreamStop (to clean up memory)

Auto-recovery Precaution �

Auto-recovery mode is entered when the stream buffer on the LabJack device is too full. At that point, the device will discard further scans but will keep track
of how many scans have been discarded. Once stream read has caught up and emptied the device stream buffer sufficiently, the device will stop discarding
scans, and will send a data packet that reports the number of discarded scans and also has a scan of all 0xFFFF that denotes the border between pre and
post auto-recovery data. In the LJM stream buffer that is read by the user's application, LJM inserts the proper number of dummy scans, filled with all -9999.0s,
to maintain proper timing of stream data through auto-recovery.

If auto-recovery is enabled (the default), and there is any risk of auto-recovery happening (typically happens at the highest data rates only), the first channel in
the stream scan list should always be an analog input (AIN#). If you only want to stream other channels besides analog inputs and cannot add a dummy analog
input because you need maximum speed, then you must either ensure that the first channel in the scan list will never return 0xFFFF as a normal valid reading
and enable LJM_STREAM_DIGITAL_AUTO_RECOVERY_ERROR_DETECTION_DISABLED or see the Stream Speed section to reduce the chances of
auto-recovery.

LJM actually looks at the first value in each scan to detect the border scan. Once auto-recovery starts, LJM watches the first channel in a scan and if it sees
0xFFFF it assumes that is the border scan that marks the start of post auto-recovery data. 0xFFFF is a special reserved value that analog inputs never return
under normal circumstances.

Low-Latency �

Low-latency stream is for when you need to move data from the device to the host application as soon as possible after acquisition (i.e. with minimum latency).
For example, you might be trying to correlate stream data with the host's clock, or perhaps are doing feedback control.

To do low-latency stream, set the ScansPerRead parameter (of LJM_eStreamStart) to a small number. This will cause LJM_eStreamRead or the callback of
LJM_SetStreamCallback to read smaller amounts more often. LJM will also attempt to transfer data from the device according to how small ScansPerRead is:

If ScansPerRead is large, LJM may transfer many samples at once. This is efficient.
If ScansPerRead is 1 (the minimum), LJM will transfer one sample at a time from the device. This is less efficient, but allows for minimal latency.

Low-latency stream is typically limited to a scan rate of few kscans/second or less due to the increased overhead per scan. This increased overhead can
cause the symptoms mentioned in the Stream Speed section.

To get stream latency as low as possible, avoid doing unnecessary work in either the thread that calls LJM_eStreamRead or in the callback set by
LJM_SetStreamCallback. File I/O, hardware I/O, and screen updates can all take substantial time.

A real-world example:

During one test, we achieved reliable low-latency stream with:

Up to 7250 Hz ScanRate
1 to 4 AIN channels
1 ScansPerRead
USB connection
LJM 1.2100
macOS 10.13.6
Processor: 2.7 GHz Intel Core i7
Memory: 16 GB 1600 MHz DDR3

Stream Speed �

To ensure the host application is able to stream quickly, see our troubleshooting guide for the following situations:

If LJM_eStreamRead is returning error 1301 (LJME_LJM_BUFFER_FULL)

31 Jul 2019

https://labjack.com/support/software/api/ljm/constants/ljmstreamreceivetimeoutms
https://labjack.com/support/software/api/ljm/function-reference/ljmstreamburst
https://labjack.com/support/software/api/ljm/function-reference/ljmestreamread
https://labjack.com/support/software/api/ljm/function-reference/ljmestreamstop
http:///tmp/wktemp-4618c05e-1ce1-46d2-b812-b5bc008895f7.html#auto-recovery
https://labjack.com/support/software/api/ljm/constants/ljmstreamdigitalautorecoveryerrordetectiondisabled
#stream-speed
http:///tmp/wktemp-4618c05e-1ce1-46d2-b812-b5bc008895f7.html#low-latency
https://labjack.com/support/software/api/ljm/function-reference/ljmsetstreamcallback
#stream-speed
http:///tmp/wktemp-4618c05e-1ce1-46d2-b812-b5bc008895f7.html#stream-speed
https://labjack.com/support/software/api/ljm/streaming-lots-of-9999-values

If LJM_eStreamRead gives many -9999 values in aData

Reducing Stream Startup Speed �

As of LJM 1.1405: If stream has been successfully started for a given device handle without returning a LJME_USING_DEFAULT_CALIBRATION warning, the
next stream start for that device handle will not load the stream calibration. This has been shown to reduce the stream startup time by about 6 milliseconds via
USB or 10 or more milliseconds via TCP.

Example

[C/C++] Start stream with a scan rate of 10 kHz and 2 channels.

char ErrorString[LJM_MAX_NAME_SIZE];
int LJMError;
const int numAddresses = 2;
const int aScanList[] = {0, 2}; // AIN0 and AIN1
const int initScanRate = 10000;
double scanRate = initScanRate;
const int scansPerRead = initScanRate / 2;
double aData[numAddresses * scansPerRead];
int DeviceScanBacklog;
int LJMScanBacklog;
int iteration = 0;
// Start stream
// handle from LJM_Open() or LJM_OpenS()
LJMError = LJM_eStreamStart(handle, scansPerRead, numAddresses, aScanList, &scanRate);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_eStreamStart error: %s\n", ErrorString);
}
else {
 printf("Stream started at %f Hz\n", scanRate);
}
// Read stream
for (iteration = 0; iteration < 10; iteration++) {
 LJMError = LJM_eStreamRead(handle, aData, &DeviceScanBacklog, &LJMScanBacklog);
 if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_eStreamRead error: %s\n", ErrorString);
 }

 // Process the stream data in whatever way suits your application
 MyDataProcessingFunction(aData, DeviceScanBacklog, LJMScanBacklog);
}
// Stop stream
LJMError = LJM_eStreamStop(handle);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_eStreamStop error: %s\n", ErrorString);
}

2.4.2 - eStreamRead
Add new comment

Returns data from an initialized and running LJM stream buffer. Waits for data to become available, if necessary.

Syntax

LJM_ERROR_RETURN LJM_eStreamRead(
 int Handle,
 double * aData,
 int * DeviceScanBacklog,
 int * LJMScanBacklog)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

aData [out]
An array that contains the values being read. Returns all channels interleaved. Must be large enough to hold (ScansPerRead * NumAddresses) values,
where ScansPerRead and NumAddresses are values passed to LJM_eStreamStart. The data returned is removed from the LJM stream buffer. This is
done according to first in, first out (FIFO) order.

DeviceScanBacklog [out]
The number of scans left in the device buffer, as measured from when data was last collected from the device. DeviceScanBacklog should usually be
near zero and not growing.

LJMScanBacklog [out]
The number of scans left in the LJM buffer, which does not include concurrent data sent in the aData array. LJMScanBacklog should usually be near

31 Jul 2019

http:///tmp/wktemp-4618c05e-1ce1-46d2-b812-b5bc008895f7.html#startup-speed
https://labjack.com/support/software/api/ljm/function-reference/ljmestreamread#comment-form
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamstart

zero and not growing.

Returns

LJM errorcodes or 0 for no error.

If LJM_eStreamRead returns an error, LJM nearly always attempts to command the device to stop streaming. LJM does not do so for the case
when LJME_NO_SCANS_RETURNED is returned (due to LJM_STREAM_SCANS_RETURN_ALL_OR_NONE).

Remarks

Before calling this function, create a data buffer using LJM_eStreamStart. To stop stream, use LJM_eStreamStop.

If LJM_eStreamRead gives error 1301 (LJME_LJM_BUFFER_FULL) or many -9999 values in aData, here are some strategies to help.

Example

See the LJM_eStreamStart page for an example using LJM_eStreamRead.

2.4.3 - eStreamStop
Stops the device from collecting data in stream mode and stops LJM from storing any more data from the device.

Syntax

LJM_ERROR_RETURN LJM_eStreamStop(int Handle)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

Returns

LJM errorcodes or 0 for no error.

Having trouble with stream? See our troubleshooting guide.

Remarks

This function writes to the following registers:

STREAM_ENABLE

Use LJM_eStreamStop when the data streaming session is completed, or to temporarily pause new data from being stored. To begin streaming again,
use LJM_eStreamStart.

When LJM_eStreamStop is called, LJM will maintain any previously collected data in the buffer to be read. Starting a new stream will clear the buffer from the
old stream.

Example

See the LJM_eStreamStart page for an example using LJM_eStreamStop.

2.4.4 - StreamBurst
Initializes a stream burst and collects data. This function combines LJM_eStreamStart, LJM_eStreamRead, and LJM_eStreamStop, as well as some other
device initialization.

Syntax

LJM_ERROR_RETURN LJM_StreamBurst(
 int Handle,
 int NumAddresses,
 const int * aScanList,
 double * ScanRate,
 unsigned int NumScans,
 double * aData)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

NumAddresses [in]

31 Jul 2019

https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/software/api/ljm/constants/ljmstreamscansreturn
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamstart
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamstop
https://labjack.com/support/software/api/ljm/streaming-lots-of-9999-values
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamstart
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/troubleshooting-faq
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamstart
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamstart
https://labjack.com/support/datasheets/t-series/communication/stream-mode#burst-stream
https://labjack.com/support/software/api/ljm/function-reference/ljmestreamstart
https://labjack.com/support/software/api/ljm/function-reference/ljmestreamread
https://labjack.com/support/software/api/ljm/function-reference/ljmestreamstop
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens

The number of addresses in aScanList. The size of the aScanList array.

aScanList [in]
An array of addresses to stream. The scan list is the list of data addresses that are to be buffered by LJM and returned in aData. Find addresses in the
Modbus Map. For example, to stream AIN3 add the address 6 to the scan list.

ScanRate [in/out]
A pointer that sets the desired number of scans per second. Upon successful return of this function, ScanRate will be updated to the actual scan rate that
the device used. Keep in mind that data rate limits are specified in Samples/Second which is equal to NumAddresses * Scans/Second, or NumAddresses *

ScanRate .

NumScans [in]
The number of scans to collect. This is how many burst scans are collected and may not be zero.

aData [out]
An array that contains the values being read. Returns all channels interleaved. Must be large enough to hold NumScans * NumAddresses values.

Returns

LJM errorcodes or 0 for no error.

Remarks

LJM_StreamBurst does not write to STREAM_BUFFER_SIZE_BYTES.

Address configuration such as range, resolution, and differential voltages must be handled by writing to the device.

This function will block for NumScans / ScanRate seconds or longer.

For more details about stream, see the LJM_eStreamStart page.

Example

[C/C++] Stream AIN0 and FIO_STATE for 10 scans at 2kHz.

int err;
int numChannels = 2;
int aScanList[2] = {0, 2500};
double scanRate = 2000;
int numScans = 10;

unsigned int numSamples = numChannels * numScans;
double * aBurstSamples = malloc(sizeof(double) * numSamples);

err = LJM_StreamBurst(handle, numChannels, aScanList, &scanRate, numScans,
 aBurstSamples);
if (err != LJME_NOERROR) {
 // Handle error
}

// Print the scans in aBurstSamples

free(aBurstSamples);

2.4.5 - SetStreamCallback
Sets a callback that is called by LJM when the stream has collected ScansPerRead scans. The callback should call LJM_eStreamRead.

LJM_SetStreamCallback is alternative to manually calling LJM_eStreamRead. Manually calling LJM_eStreamRead is more straightforward than using
LJM_SetStreamCallback, but LJM_SetStreamCallback allocates a work thread within LJM that calls the callback. Because of this, it's more appropriate for
applications that need to perform other work, such as updating a GUI.

Syntax

typedef void (*LJM_StreamReadCallback)(void *);

LJM_ERROR_RETURN LJM_SetStreamCallback(
 int Handle,
 LJM_StreamReadCallback Callback,
 void * Arg)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

Callback [in]
The callback function for LJM's stream thread to call when ScansPerRead scans of stream data are ready, which should call LJM_eStreamRead to
acquire data. ScansPerRead is a value of LJM_eStreamStart.

31 Jul 2019

https://labjack.com/support/software/api/modbus/modbus-map
https://labjack.com/support/datasheets/t-series/communication/stream-mode#stream-speed
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/software/api/ljm/function-reference/ljmestreamstart
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamread
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamread
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamread
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamread
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamstart

Arg [in]
The user-defined argument that is passed to Callback when it is invoked.

Returns

LJM errorcodes or 0 for no error.

Remarks

Before calling this function, start stream using LJM_eStreamStart.

The Callback function is executed by a dedicated thread within LJM. LJM_SetStreamCallback should not be called from within Callback. In versions of LJM
before 1.1405, LJM_eStreamStop should not be called from within Callback.

To disable the previous callback for stream reading, pass 0 or NULL as Callback.

As an alternative to LJM_SetStreamCallback, the LJM configuration LJM_STREAM_SCANS_RETURN may also be useful. It controls the block
on LJM_eStreamRead, allowing LJM_eStreamRead to return immediately with an error if a full read of data is not ready.

2.4.6 - GetStreamTCPReceiveBufferStatus
Requires LJM 1.2000 or later

For handles running stream over the network, gets the current state of the receive buffer.

The Receive Buffer

All TCP streams have a receive buffer. In the context of receiving stream data from a LabJack device, the receive buffer is a buffer on the host computer that is
managed by the operating system. The LabJack device sends packets to this buffer, which LJM then reads from.

As the receive buffer fills up with bytes, the host computer will report to the LabJack device that it has a reduced receive window. For example, if there are
1040 bytes of free space remaining in the computer's receive buffer, TCP protocol will report to the device that the computer has a receive window of 1040.
The device will then be able to send 1040 bytes and no more until the computer sends another packet declaring that it has freed some space from the receive
buffer.

Once the receive window is completely full, the LabJack device is temporarily not able to send more packets. Once this happens, it begins filling its own device
scan buffer. Once the device scan buffer is completely full, it will stop collecting scans and auto-recovery will occur.

During stream, LJM has a dedicated thread that does nothing but read from the receive window. This usually prevents the receive window from being
completely filled, but some computers may be, in effect, slower than the LabJack device—such that the device sends bytes faster than the host computer
reads bytes from the receive window. For this reason, it is important to monitor the state of the receive buffer if auto-recovery is occurring.

Syntax

LJM_ERROR_RETURN LJM_GetStreamTCPReceiveBufferStatus(
 int Handle,
 unsigned int * ReceiveBufferBytesSize,
 unsigned int * ReceiveBufferBytesBacklog)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

ReceiveBufferBytesSize [out]
Returns the current maximum number of bytes that can be stored in the receive buffer before it is full.

ReceiveBufferBytesBacklog [out]
Returns the current number of bytes stored in the receive buffer.

Returns

LJM errorcodes or 0 for no error.

Remarks

Before calling this function, start stream using LJM_eStreamStart.

If the device handle's connection type is Ethernet or WiFi, this function should be called after LJM_eStreamRead if auto-recovery is occurring.

If the device handle's connection type is USB, this function returns meaningless values.

Use LJM_GetHandleInfo to get the handle's connection type.

If the ratio of ReceiveBufferBytesBacklog / ReceiveBufferBytesSize is consistently increasing, auto-recovery is likely to happen. If the ReceiveBufferBytesBacklog is staying
relatively low but auto-recovery is still occurring, there may be network reliability issues or other issues. In either case, see strategies for reducing auto-

31 Jul 2019

https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamstart
https://labjack.com/support/ljm/users-guide/constants/ljmstreamscansreturn
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamread
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamread
https://labjack.com/support/software/api/ljm/function-reference/ljmestreamstart#auto-recovery
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamstart
https://labjack.com/support/software/api/ljm/function-reference/ljmestreamread
https://labjack.com/support/software/api/ljm/function-reference/ljmgethandleinfo
https://labjack.com/support/software/api/ljm/streaming-lots-of-9999-values

recovery.

2.5 - Device Information Functions
Add new comment

LJM_GetHandleInfo

LJM_GetHandleInfo returns details about a device handle.

�
Device Discovery

The ListAll functions search for available LabJack device connections. LJM_ListAll and LJM_ListAllS are the same function, except that LJM_ListAll uses
integer parameters to filter what connections are searched for, while LJM_ListAllS uses string parameters to do the same. LJM_ListAllExtended allows
arbitrary device registers to be queried.

�
Device Reconnection

In a real-world setup, device connections can intermittently fail. LJM does its best to reconnect to devices and LJM_RegisterDeviceReconnectCallback can
notify client code when reconnect has occurred.

2.5.1 - GetHandleInfo
Returns details about a device handle, which is simply a connection ID to an active device.

Syntax

LJM_ERROR_RETURN LJM_GetHandleInfo(
 int Handle,
 int * DeviceType,
 int * ConnectionType,
 int * SerialNumber,
 int * IPAddress,
 int * Port,
 int * MaxBytesPerMB)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

DeviceType [out]
The device type corresponding to a constant:
LJM_dtT7 (7) for T7 series device
LJM_dtDIGIT (200) for Digit series device

ConnectionType [out]
The connection type corresponding to a constant:
LJM_ctUSB (1) for USB
LJM_ctETHERNET (3) for Ethernet
LJM_ctWIFI (4) for WiFi

SerialNumber [out]
The serial number of the device.

IPAddress [out]
The integer representation of the device's IP address when ConnectionType is TCP-based. Unless ConnectionType is TCP-based, this will be
LJM_NO_IP_ADDRESS. Note that this can be converted to a human-readable string with the LJM_NumberToIP function.

Port [out]
The port number when the device connection is TCP-based, or the pipe if the device connection is USB-based.

MaxBytesPerMB [out]
The maximum packet size in number of bytes that can be sent/received from this device. Note that this can change, depending on connection type and
device type. This information is important if you are using the low-level functions, or when passing large arrays into other functions.

Returns

LJM errorcodes or 0 for no error.

Remarks

31 Jul 2019

https://labjack.com/support/software/api/ljm/function-reference/device-information#comment-form
https://labjack.com/support/ljm/users-guide/function-reference/ljmgethandleinfo
http:///tmp/wktemp-4618c05e-1ce1-46d2-b812-b5bc008895f7.html#deviceDiscovery
https://labjack.com/support/ljm/users-guide/function-reference/ljmlistall
https://labjack.com/support/ljm/users-guide/function-reference/ljmlistalls
https://labjack.com/support/ljm/users-guide/function-reference/ljmlistallextended
http:///tmp/wktemp-4618c05e-1ce1-46d2-b812-b5bc008895f7.html#deviceReconnection
https://labjack.com/support/software/api/ljm/function-reference/LJMRegisterDeviceReconnectCallback
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/ljm/users-guide/function-reference/utility/ljmnumbertoip
https://labjack.com/support/ljm/users-guide/error-codes

This function is useful to quickly see information about a device handle, such as the serial number, or maximum packet size. In the event that "ANY"-type
parameters were used in opening, this function can be used to see which device was actually opened.

Examples

[C/C++] Retrieve information about a handle and print it.

int LJMError;
int portOrPipe, ipAddress, serialNumber, packetMaxBytes;
int deviceType = LJM_dtANY;
int connectionType = LJM_ctANY;
char string[LJM_STRING_ALLOCATION_SIZE];
char ipAddressString[LJM_IPv4_STRING_SIZE];

LJMError = LJM_GetHandleInfo(handle, &deviceType, &connectionType, &serialNumber, &ipAddress,
 &portOrPipe, &packetMaxBytes);
if (LJMError) {
 LJM_ErrorToString(LJMError, string);
 printf("LJM_GetHandleInfo error: %s (%d)\n", string, LJMError);
}
else {
 printf("deviceType: %d\n", deviceType);
 printf("connectionType: %d\n", connectionType);
 printf("serialNumber: %d\n", serialNumber);

 if (connectionType == LJM_ctETHERNET || connectionType == LJM_ctWIFI) {
 LJM_NumberToIP(ipAddress, ipAddressString);
 printf("IP address: %s\n", ipAddressString);
 }

 if (connectionType == LJM_ctUSB) {
 printf("pipe: %d\n", portOrPipe);
 }
 else {
 printf("port: %d\n", portOrPipe);
 }

 printf("The maximum number of bytes you can send to or receive from this device in one packet is %d bytes.\n",
 packetMaxBytes);
}

2.5.2 - ListAll
Scans for LabJack devices, returning arrays describing the devices found. The use of "ANY"-type for DeviceType and ConnectionType allow this function to
perform a broad search.

Syntax

LJM_ERROR_RETURN LJM_ListAll(
 int DeviceType,
 int ConnectionType,
 int * NumFound,
 int * aDeviceTypes,
 int * aConnectionTypes,
 int * aSerialNumbers,
 int * aIPAddresses)

Parameters

DeviceType [in]
Filter device type to find. 4 for T4 devices, 7 for T7 devices, 84 for T-series devices, 200 for Digit devices, etc. 0 for ANY is allowed.

For other LabJack devices, see What driver/library should I use with my LabJack?

ConnectionType [in]
Filter connection type to scan. 1 for USB, 2 for TCP, 3 for Ethernet, 4 for WIFI. 0 for ANY is allowed.

NumFound [out]
A pointer that returns the number of devices found.

aDeviceTypes [out]
An array of device types, one for each of the NumFound devices. Must be preallocated to size LJM_LIST_ALL_SIZE.

aConnectionTypes [out]
An array of connection types, one for each of the NumFound devices. Must be preallocated to size LJM_LIST_ALL_SIZE.

aSerialNumbers [out]
An array of serial numbers, one for each of the NumFound devices. Must be preallocated to size LJM_LIST_ALL_SIZE.

aIPAddresses [out]
An array of IP Addresses, one for each (if applicable) of the NumFound devices. When the device is not TCP capable, IP address will be

31 Jul 2019

https://labjack.com/support/faq/what-driverlibrary-should-i-use-my-labjack

LJM_NO_IP_ADDRESS.

Returns

LJM errorcodes or 0 for no error.

Remarks

This function is useful for big programs that open multiple kinds of devices, especially when the device type and connection type are unknown. This function
only shows what devices could be opened. To actually open a device, use LJM_Open or LJM_OpenS.

When the ConnectionType parameter of this function is network-based, this function will check the IP addresses listed in LJM Specific IPs.

Examples

See examples/utilities/list_all.c, available in the LJM C++ examples.

2.5.3 - ListAllS
Scans for LabJack devices, returning arrays describing the devices found. The use of "ANY" for DeviceType and ConnectionType allow this function to perform
a broad search.

Syntax

LJM_ERROR_RETURN LJM_ListAllS(
 const char * DeviceType,
 const char * ConnectionType,
 int * NumFound,
 int * aDeviceTypes,
 int * aConnectionTypes,
 int * aSerialNumbers,
 int * aIPAddresses)

Parameters

DeviceType [in]
Filter device type to find. "T4" for T4 devices, "T7" for T7 devices, "TSERIES" for T-series devices, "Digit" for Digit devices, etc. "ANY" is allowed.

For other LabJack devices, see What driver/library should I use with my LabJack?

ConnectionType [in]
Filter connection type to scan. "USB" for USB connection, "TCP" for TCP connection, etc. "ANY" is allowed.

NumFound [out]
A pointer that returns the number of devices found.

aDeviceTypes [out]
An array of device types, one for each of the NumFound devices. Must be preallocated to size LJM_LIST_ALL_SIZE.

aConnectionTypes [out]
An array of connection types, one for each of the NumFound devices. Must be preallocated to size LJM_LIST_ALL_SIZE.

aSerialNumbers [out]
An array of serial numbers, one for each of the NumFound devices. Must be preallocated to size LJM_LIST_ALL_SIZE.

aIPAddresses [out]
An array of IP Addresses, one for each (if applicable) of the NumFound devices. When the device is not TCP capable, IP address will be
LJM_NO_IP_ADDRESS.

Returns

LJM errorcodes or 0 for no error.

Remarks

This function is useful for big programs that open multiple kinds of devices, especially when the device type and connection type are unknown. This function
only shows what devices could be opened. To actually open a device, use LJM_Open or LJM_OpenS.

When the ConnectionType parameter of this function is network-based, this function will check the IP addresses listed in LJM_SPECIAL_ADDRESSES_FILE.

Examples

See examples/utilities/list_all.c, available in the LJM C++ examples.

Device Not Found?

31 Jul 2019

https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/software/api/ljm/constants/SpecificIPsConfigs
https://labjack.com/support/ljm/examples/c
https://labjack.com/support/faq/what-driverlibrary-should-i-use-my-labjack
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/software/api/ljm/constants/ljmspecialaddressesfile
https://labjack.com/support/ljm/examples/c

If a device isn't properly being found, some important debugging information can be found in our Device Not Found? App Note. If a network connection needs
to be debugged, read through our Setup WiFi and Ethernet App Note as well.

2.5.4 - ListAllExtended
Advanced version of LJM_ListAll that performs an additional query of arbitrary registers on the device.

Syntax

LJM_ERROR_RETURN LJM_ListAllExtended(
 int DeviceType,
 int ConnectionType,
 int NumAddresses,
 const int * aAddresses,
 const int * aNumRegs,
 int MaxNumFound,
 int * NumFound,
 int * aDeviceTypes,
 int * aConnectionTypes,
 int * aSerialNumbers,
 int * aIPAddresses,
 unsigned char * aBytes)

Parameters

DeviceType [in]
Filter device type to find. 4 for T4 devices, 7 for T7 devices, 84 for T-series devices, 200 for Digit devices, etc. 0 for ANY is allowed.

ConnectionType [in]
Filter connection type to scan. 1 for USB, 2 for TCP, 3 for Ethernet, 4 for WIFI. 0 for ANY is allowed.

NumAddresses [in]
The number of addresses to query. Also the size of aAddresses and aNumRegs.

aAddresses [in]
The addresses to query for each device that is found.

aNumRegs [in]
The addresses to query for each device that is found. Each aNumRegs[i] corresponds to aAddresses[i].

MaxNumFound [in]
The maximum number of devices to find. Also the size of aDeviceTypes, aConnectionTypes, aSerialNumbers, and aIPAddresses.

NumFound [out]
A pointer that returns the number of devices found.

aDeviceTypes [out]
An array of device types, one for each of the NumFound devices. Must be preallocated to size MaxNumFound.

aConnectionTypes [out]
An array of connection types, one for each of the NumFound devices. Must be preallocated to size MaxNumFound.

aSerialNumbers [out]
An array of serial numbers, one for each of the NumFound devices. Must be preallocated to size MaxNumFound.

aIPAddresses [out]
An array of IP Addresses, one for each (if applicable) of the NumFound devices. When the device is not TCP capable, IP address will be
LJM_NO_IP_ADDRESS.

aBytes [out]
An array that must be preallocated to size:
MaxNumFound * <the sum of aNumRegs> * LJM_BYTES_PER_REGISTER,
which will contain the query bytes sequentially. A device
represented by index i would have an aBytes index of:
(i * <the sum of aNumRegs> * LJM_BYTES_PER_REGISTER).

Returns

LJM errorcodes or 0 for no error.

Remarks

When the ConnectionType parameter of this function is network-based, this function will check the IP addresses listed in LJM_SPECIAL_ADDRESSES_FILE.

Examples

See examples/utilities/list_all_extended.c, available in the LJM C++ examples.

31 Jul 2019

https://labjack.com/support/app-notes/device-not-found
https://labjack.com/support/app-notes/wifi-and-ethernet-t7-t4-t7-pro
https://labjack.com/support/ljm/users-guide/function-reference/ljmlistall
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/software/api/ljm/constants/ljmspecialaddressesfile
https://labjack.com/support/ljm/examples/c

2.5.5 - RegisterDeviceReconnectCallback
Sets a callback that is called by LJM after the device is found to be disconnected (resulting in a read/write error) and the device is then reconnected.

Syntax

typedef void (*LJM_DeviceReconnectCallback)(int);

LJM_ERROR_RETURN LJM_RegisterDeviceReconnectCallback(
 int Handle,
 LJM_DeviceReconnectCallback Callback)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

Callback [in]
The callback function which will receive the device Handle as a parameter.

Returns

LJM errorcodes or 0 for no error.

Remarks

For more information on device reconnection, see "2.1 - Opening and Closing".

To disable the previous callback for reconnection, pass 0 or NULL as Callback.

LJM_RegisterDeviceReconnectCallback may not be called from within a LJM_DeviceReconnectCallback.

2.6 - Utility Functions

2.6.1 - ErrorToString
Get the name of an error code.

Syntax

LJM_VOID_RETURN LJM_ErrorToString(
 int ErrorCode,
 char * ErrorString)

Parameters

ErrorCode [in]
The error code number.

ErrorString [out]
A pointer to the char array which will be populated with the null-terminated error name/description. Allocate to size LJM_MAX_NAME_SIZE.

Returns

None.

Remarks

If the constants file that has been loaded does not contain the error code, this returns a null-terminated message saying so. If the constants file could not be
opened, this returns a null-terminated string containing the expected file path.

Examples

[C/C++] Get the name of error code 1230

char errorName[LJM_MAX_NAME_SIZE]; // LJM_MAX_NAME_SIZE is 256
LJM_ErrorToString(1230, errorName);
printf ("%s \n", errorName);
// prints "LJME_COULD_NOT_CLAIM_DEVICE"

2.6.2 - TCVoltsToTemp
Converts thermocouple voltage to temperature.

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/software/api/ljm/function-reference/opening-and-closing

Syntax

LJM_ERROR_RETURN LJM_TCVoltsToTemp(
 int TCType,
 double TCVolts,
 double CJTempK,
 double * pTCTempK)

Parameters

TCType [in]
The thermocouple type. Constants are (alphabetically):
B = 6001
C = 6009
E = 6002
J = 6003
K = 6004
N = 6005
R = 6006
S = 6007
T = 6008

TCVolts [in]
The voltage reported by the thermocouple.

CJTempK [in]
The cold-junction temperature in degrees Kelvin.

pTCTempK [out]
The calculated thermocouple temperature in degrees Kelvin.

Returns

LJM errorcodes or 0 for no error.

Remarks

Use this function to easily calculate thermocouple temperatures from voltage readings. When thermocouples are connected to the AIN0-AIN3 screw terminals,
the cold-junction temperature can be obtained from AIN14, which maps to a nearby temp sensor inside most LabJack devices.

Examples

[C/C++] Get the temperature of a K type thermocouple.

int LJMError;
double TCTempKelvin;

LJMError = LJM_TCVoltsToTemp(6004, 0.00134, 299.039, &TCTempKelvin);
printf("%f\n", TCTempKelvin);

2.6.3 - NumberToIP
Takes an integer representing an IPv4 address and outputs the corresponding decimal-dot IPv4 address as a null-terminated string.

Syntax

LJM_ERROR_RETURN LJM_NumberToIP(
 unsigned int Number,
 char * IPv4String)

Parameters

Number [in]
A number representing an IPv4 address.

IPv4String [out]
A character array which will be updated to contain the null-terminated string representation of an IPv4 address. Must be allocated to size
LJM_IPv4_STRING_SIZE.

Returns

LJM errorcodes or 0 for no error.

Remarks

Use this function to get a more human-readable interpretation of an IP address.

31 Jul 2019

https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/error-codes

Examples

[C/C++] Convert a number into an IPv4 string.

int LJMError;
char IPv4String[16];

LJMError = LJM_NumberToIP(3232235983, IPv4String);
printf ("%s \n", IPv4String);
// Prints "192.168.1.207"

2.6.4 - NumberToMAC
Takes an integer representing a MAC address and outputs the corresponding hex-colon MAC address as a null-terminated string.

Syntax

LJM_ERROR_RETURN LJM_NumberToMAC(
 unsigned long long Number,
 char * MACString)

Parameters

Number [in]
The number representing a MAC address.

MACString [out]
A character array which will be updated to contain the null-terminated string representation of the MAC address. Must be allocated to size
LJM_MAC_STRING_SIZE.

Returns

LJM errorcodes or 0 for no error.

Remarks

Use this function to get a more human-readable interpretation of a MAC address.

Examples

[C/C++] Convert a number into a MAC string.

int LJMError;
char MACString[18];

LJMError = LJM_NumberToIP(81952921372024, MACString);
printf ("%s \n", MACString);
// prints "78:45:C4:26:89:4A"

2.6.5 - IPToNumber
Takes a decimal-dot IPv4 string representing an IPv4 address and outputs the corresponding integer version of the address.

Syntax

LJM_ERROR_RETURN LJM_IPToNumber(
 const char * IPv4String,
 unsigned int * Number)

Parameters

IPv4String [in]
A decimal dot string representing an IPv4 address.

Number [out]
The numerical representation of IPv4String.

Returns

LJM errorcodes or 0 for no error. Returns LJME_INVALID_PARAMETER if IPv4String could not be parsed as an IPv4 address.

Remarks

Use this function to convert a human-readable interpretation of an IP address into an integer value.

Examples

31 Jul 2019

https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/error-codes

[C/C++] Convert an IPv4 string into a number.

int LJMError;
unsigned int Number;

LJMError = LJM_IPToNumber("192.168.1.207", &Number);
printf ("%u \n", Number);
// prints 3232235983

2.6.6 - MACToNumber
Takes a hex-colon string representing a MAC address and outputs the corresponding integer version of the address.

Syntax

LJM_ERROR_RETURN LJM_MACToNumber(
 const char * MACString,
 unsigned long long * Number)

Parameters

MACString [in]
A hex-colon string representing a MAC address.

Number [out]
The numerical representation of MACString.

Returns

LJM errorcodes or 0 for no error. Returns LJME_INVALID_PARAMETER if MACString could not be parsed as a MAC address.

Remarks

Use this function to convert a human-readable interpretation of a MAC address into an integer value.

Examples

[C/C++] Convert a MAC string into a number.

int LJMError;
unsigned long long Number;

LJMError = LJM_MACToNumber("78:45:C4:26:89:4A", &Number);
printf ("%llu \n", Number);
// prints 81952921372024

2.6.7 - NameToAddress
Add new comment

Takes a Modbus register name as input and produces the corresponding Modbus address and type. These two values can serve as input to functions that
have Address and Type as input parameters.

Syntax

LJM_ERROR_RETURN LJM_NameToAddress(
 const char * Name,
 int * Address,
 int * Type)

Parameters

Name [in]
A null-terminated c-string register identifier. This register identifiers can be a register name or a register alternate name.

Address [out]
Output parameter containing the address specified by Name.

Type [out]
Output parameter containing the type specified by Name.

Returns

LJM errorcodes or 0 for no error.

Remarks

31 Jul 2019

https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/software/api/ljm/function-reference/utility/ljmnametoaddress#comment-form
https://labjack.com/support/ljm/users-guide/error-codes

If Name is not a valid register identifier, Address will be set to LJM_INVALID_NAME_ADDRESS.

Examples

[C/C++] Get the address and type of "AIN3".

int LJMError;
int Address;
int Type;
LJMError = LJM_NameToAddress("AIN3", &Address, &Type);
printf("%d \n", Address);
// prints 6
printf("%d \n", Type);
// prints 3 for LJM_FLOAT32

2.6.8 - NamesToAddresses
Takes a list of Modbus register names as input and produces two lists as output - the corresponding Modbus addresses and types. These two lists can serve
as input to functions that have Address/aAddresses and Type/aTypes as input parameters.

Syntax

LJM_ERROR_RETURN LJM_NamesToAddresses(
 int NumFrames,
 const char ** aNames,
 int * aAddresses,
 int * aTypes)

Parameters

NumFrames [in]
The number of names in aNames and the allocated size of aAddresses and aTypes.

aNames [in]
An array of null-terminated c-string register identifiers. These register identifiers can be register names or register alternate names.

aAddresses [out]
An output array containing the addresses specified by aNames in the same order, must be allocated to the size NumFrames before calling
LJM_NamesToAddresses.

aTypes [out]
An output array containing the types specified by aNames in the same order, must be allocated to the size NumFrames before calling
LJM_NamesToAddresses.

Returns

LJM errorcodes or 0 for no error.

Remarks

For each register identifier in aNames that is invalid, the corresponding aAddresses value will be set to LJM_INVALID_NAME_ADDRESS.

Examples

[C/C++] Get the addresses and types of "AIN3" and "DAC0".

int LJMError;
const char * aNames[2] = {"AIN3", "DAC0"};
int aAddresses[2];
int aTypes[2];
int AIN3Address;
int AIN3Type;
int DAC0Address;
int DAC0Type;

LJMError = LJM_NamesToAddresses(2, aNames, aAddresses, aTypes);
AIN3Address = aAddresses[0];
AIN3Type = aTypes[0];
DAC0Address = aAddresses[1];
DAC0Type = aTypes[1];

2.6.9 - AddressToType
Retrieves the data type for a given Modbus register address.

Syntax

LJM_ERROR_RETURN LJM_AddressToType(

31 Jul 2019

https://labjack.com/support/ljm/users-guide/error-codes

 int Address,
 int * Type)

Parameters

Address [in]
A Modbus address.

Type [out]
Output parameter containing the data type of Address.

Returns

LJM errorcodes or 0 for no error.

Remarks

Convenience function to programmatically discover the type of a Modbus address. Most people can simply look in the Modbus Map.

Examples

[C/C++] Get the type of Modbus address 6, which is AIN3.

int LJMError;
int Type;
LJMError = LJM_AddressesToTypes(6, &Type);
printf("%d \n", Type);
// 3 for LJM_FLOAT32

2.6.10 - AddressesToTypes
Retrieves multiple data types for given Modbus register addresses.

Syntax

LJM_ERROR_RETURN LJM_AddressesToTypes(
 int NumAddresses,
 int * aAddresses,
 int * aTypes)

Parameters

NumAddresses [in]
The number of addresses to process.

aAddresses [in]
The array of address numbers to process. Set to size NumAddresses.

aTypes [out]
An output array containing the data types of each address specified in aAddresses. Set to size NumAddresses.

Returns

LJM errorcodes or 0 for no error.

Remarks

Convenience function to programmatically discover the types of many Modbus addresses. Most people can simply look in the Modbus Map. For each
aAddresses[i] that is not found, the corresponding entry aTypes[i] will be set to LJM_INVALID_NAME_ADDRESS and this function will return
LJME_INVALID_ADDRESS.

Examples

[C/C++] Get the type of Modbus address 6, which is AIN3, and Modbus address 2002, which is FIO2.

int LJMError;
int aAddresses[2] = {6, 2002};
int aTypes[2];
int TypeAIN3;
int TypeFIO2;
LJMError = LJM_AddressesToTypes(2, aAddresses, aTypes);
TypeAIN3 = aTypes[0]; //LJM_FLOAT32
TypeFIO2 = aTypes[1]; //LJM_UINT16

2.7 - Timing Functions

31 Jul 2019

https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/modbus/map
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/modbus/map

Use LJM_GetHostTick or LJM_GetHostTick32Bit to get the current system time.

Use LJM_StartInterval, LJM_WaitForNextInterval, and LJM_CleanInterval to perform periodic operations.

2.7.1 - GetHostTick
Queries the host system's steady (monotonic) clock, preferentially with high precision.

Syntax

LJM_LONG_LONG_RETURN LJM_GetHostTick()

Returns

The current clock tick in microseconds, as a 64-bit integer. Resolution may vary.

On Windows, sleep states (such as standby, hibernate, or connected standby) do not affect LJM_GetHostTick. Other platforms should be manually tested.

Compatibility

Some development environments can not handle the 64-bit return value. In such cases use LJM_GetHostTick32Bit which uses two 32-bit parameters to return
the clock tick.

Example

[C/C++] Measure how long an operation takes.

double value;
long long time0 = LJM_GetHostTick();
err = LJM_eReadName(handle, "SERIAL_NUMBER", &value);
long long time1 = LJM_GetHostTick();
ErrorCheck(err, "LJM_eReadName");
printf("LJM_eReadName took %lld microseconds.\n", time1 - time0);

Device I/O times can vary greatly, but this prints something like:

LJM_eReadName took 338 microseconds.

Determining What's Slow

There are a number of spots in your code that could be incurring a delay. These include:

Communication with a LabJack device
Communication with other devices
Other I/O
Graphics
CPU-intensive tasks

If your loop is too slow, try timing which part of the loop is slow. A good way to do this is to measure two sections: how long a section of code takes and how
long the entire loop takes. Then, output both times and compare.

With pseudo-C code this could look like the following:

long long tloop = 0;
for (...) {
 long long t0 = LJM_GetHostTick();
 // The section under test goes here
 long long t1 = LJM_GetHostTick();

 if (tloop != 0) {
 printf("The code section took %lld microseconds;", t1 - t0);
 printf(" the whole loop took %lld microseconds\n", t1 - tloop);
 }
 tloop = t1;
}

After the first loop, this uses the second GetHostTick and a temporary variable to measure total loop time.

Each line shows how long the code section took compared to the whole loop:

The code section took 370 microseconds; the whole loop took 378 microseconds
The code section took 325 microseconds; the whole loop took 333 microseconds
...

2.7.2 - GetHostTick32Bit
Gets the current clock tick, exactly like LJM_GetHostTick, except it uses two 32-bit numbers.

31 Jul 2019

https://labjack.com/support/software/api/ljm/function-reference/timing-functions/ljmgethosttick32bit
https://labjack.com/support/software/api/ljm/function-reference/timing-functions/ljmgethosttick

Syntax

LJM_VOID_RETURN LJM_GetHostTick32Bit(
 unsigned int * TickUpper,
 unsigned int * TickLower)

Parameters

TickUpper [out]
The upper (most significant) 32-bits of the clock tick.

TickLower [out]
The lower (least significant) 32-bits of the clock tick.

Returns

None.

Compatibility

Most modern development environments can use the normal GetHostTick function which provides the clock tick as a 64-bit return value. This 32-bit function is
provided for environments that can not handle 64-bit values, since all environments can pass 32-bit parameters. For example, LabVIEW 7.1 does not support
64-bit return values but has no problem with the 32-bit parameters, so our applicable LabVIEW VI uses LJM_GetHostTick32Bit. The clock tick values can be
kept as two separate 32-bit values or combined—as done in LJM_GetHostTick32Bit.vi, where two 32-bit integers are combined into one extended precision
float since that is a LabVIEW 7.1 data type that will hold a 64-bit integer.

Example

[C/C++] Get the current host clock tick and combine it into a single 64-bit number.

unsigned int TickUpper;
unsigned int TickLower;
long long time;
LJM_GetHostTick32Bit(&TickUpper, &TickLower);
time = ((long long)TickUpper << 32) + TickLower;
printf("The host tick is %lld\n", time);

2.7.3 - StartInterval
Sets up a reoccurring interval timer.

Syntax

LJM_ERROR_RETURN LJM_StartInterval(
 int IntervalHandle,
 int Microseconds)

Parameters

IntervalHandle [in]
The user-generated interval identifier. This can be anything.

Microseconds [in]
The number of microseconds in the interval.

Returns

LJM errorcodes or 0 for no error.

Remarks

This function allocates memory for the given IntervalHandle and begins a reoccurring interval timer. This function does not perform any waiting.

In many applications an interval timer is preferable to using a normal delay (sleep), as it is difficult to get an exact interval using a delay. For example, say a
loop makes an I/O call that takes 5 to 15 milliseconds (ms) each time, and this is followed by a 90 ms delay. The loop will take 95 to 105 ms per iteration, and
the average time per iteration over time could be anywhere in that range. Using interval timers avoids this problem because the loop will always take the
specified number of milliseconds (or else LJM_WaitForNextInterval will notify you of skipped intervals).

Jitter and clock skew may occur, but the average interval period over time (ignoring skipped intervals) will be equal to the number of specified Microseconds .

For more precise timing, use Lua scripting or streaming.

Examples

[C/C++] Read AIN0 once per second, 100 times.

31 Jul 2019

https://labjack.com/support/software/api/ljm/function-reference/timing-functions/ljmgethosttick
https://labjack.com/support/software/examples/ljm/labview
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/datasheets/t-series/lua-scripting
https://labjack.com/support/datasheets/t-series/communication/stream-mode

Given a handle to a device, a function named ReadAndOutput that reads and outputs a registers, and an error-checking function called ErrorCheck , the following
example reads AIN0 once per second, 100 times:

int err;
int SkippedIntervals;
const int INTERVAL_HANDLE = 1;
err = LJM_StartInterval(INTERVAL_HANDLE, 1000 * 1000);
ErrorCheck(err, "LJM_StartInterval");

for (int loop = 0; loop < 100; loop++) {
 ReadAndOutput(handle, "AIN0");

 err = LJM_WaitForNextInterval(INTERVAL_HANDLE, &SkippedIntervals);
 ErrorCheck(err, "LJM_WaitForNextInterval");
 if (SkippedIntervals > 0) {
 printf("SkippedIntervals: %d\n", SkippedIntervals);
 }
}

err = LJM_CleanInterval(INTERVAL_HANDLE);
ErrorCheck(err, "LJM_CleanInterval");

2.7.4 - WaitForNextInterval
Waits (blocks/sleeps) until the next interval occurs. If intervals are skipped, this function still waits until the next complete interval.

Syntax

LJM_ERROR_RETURN LJM_WaitForNextInterval(
 int IntervalHandle,
 int * SkippedIntervals)

Parameters

IntervalHandle [in]
The user-generated interval identifier. This can be anything.

SkippedIntervals [out]
The number of skipped intervals that occurred since the last time this function was called.

Returns

LJM errorcodes or 0 for no error.

Returns LJME_INVALID_INTERVAL_HANDLE if IntervalHandle was not set up using LJM_StartInterval.

Examples

See LJM_StartInterval for an example.

2.7.5 - CleanInterval
Cleans/deallocates memory for the given IntervalHandle .

Syntax

LJM_ERROR_RETURN LJM_CleanInterval(
 int IntervalHandle)

Parameters

IntervalHandle [in]
The user-generated interval identifier. This can be anything.

Returns

LJM errorcodes or 0 for no error.

Returns LJME_INVALID_INTERVAL_HANDLE if IntervalHandle was not set up using LJM_StartInterval.

Examples

See LJM_StartInterval for an example.

2.8 - Debugging Functions

31 Jul 2019

https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/software/api/ljm/function-reference/timing-functions/ljmstartinterval
https://labjack.com/support/software/api/ljm/function-reference/timing-functions/ljmstartinterval
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/software/api/ljm/function-reference/timing-functions/ljmstartinterval
https://labjack.com/support/software/api/ljm/function-reference/timing-functions/ljmstartinterval

Debugging Functions Overview

LJM contains debug logging functionality that is disabled by default.

Once enabled, LJM will write messages to the LJM debug log file. These messages can contain error messages, warnings, raw packets, and other information.

LJM's debug logging can be enabled using one of two methods – via ljm_startup_configs.json or via LJM_WriteLibraryConfigS. Both methods (described
below) require changing the following LJM configuration parameters:

Change LJM_DEBUG_LOG_MODE to LJM_DEBUG_LOG_MODE_CONTINUOUS (equal to 2).
Change LJM_DEBUG_LOG_LEVEL to one of the possible debug levels. Use LJM_STREAM_PACKET (equal to 1) if you want to ensure that all debug
messages are output.
Change LJM_DEBUG_LOG_FILE_MAX_SIZE to a large number like 123456789 if your program will be running for a long time.

Enabling via ljm_startup_configs.json

The file ljm_startup_configs.json contains the LJM configurations that are used by LJM when LJM is loaded.

Note that ljm_startup_configs.json is installed / replaced every time the LJM installer is run, so this method is temporary. LJM installs ljm_startup_configs.json
to the following locations:

Windows Vista and later - C:\ProgramData\LabJack\LJM\ljm_startup_configs.json
Windows XP - C:\Documents and Settings\All Users\Application Data\LabJack\LJM\ljm_startup_configs.json
Mac OS X and Linux - /usr/local/share/LabJack/LJM/ljm_startup_configs.json

After opening ljm_startup_configs.json with a text editor, change the parameters as described above.

Enabling via LJM_WriteLibraryConfigS

Use the function LJM_WriteLibraryConfigS to change the LJM parameters as described above.

2.8.1 - Log
Saves a message of the specified severity level to the LJM debug log file.

Syntax

LJM_ERROR_RETURN LJM_Log(
 int Level,
 const char * String)

Parameters

Level [in]
The error severity level of this new log entry. See constants file LJM_DEBUG_LOG_LEVEL.

LJM_STREAM_PACKET = 1
LJM_TRACE = 2
LJM_DEBUG = 4
LJM_INFO = 6
LJM_PACKET = 7
LJM_WARNING = 8
LJM_USER = 9
LJM_ERROR = 10
LJM_FATAL = 12

String [in]
The debug message to write to the log file.

Returns

LJM errorcodes or 0 for no error.

Remarks

By default, LJM_DEBUG_LOG_MODE is to never log, so LJM does not output any log messages, even from this function. Users must first use
LJM_WriteLibraryConfigS to change the log mode. See the library configuration functions.

Examples

[C/C++] Write "Beginning stream..." to the log file with severity level: Debug.

int LJMError;
LJMError = LJM_Log(4, "Beginning stream...");

31 Jul 2019

https://labjack.com/support/ljm/users-guide/constants/ljmdebuglogfile
https://labjack.com/support/ljm/users-guide/constants/ljmdebuglogmode
https://labjack.com/support/ljm/users-guide/constants/ljmdebugloglevel
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/ljm/users-guide/constants/ljmdebuglogfile
https://labjack.com/support/ljm/users-guide/error-codes

2.8.2 - ResetLog
Clears all characters from the debug log file.

Syntax

LJM_ERROR_RETURN LJM_ResetLog()

Parameters

None.

Returns

LJM errorcodes or 0 for no error.

Remarks

See the LJM configuration properties for Log-related properties.

Examples

[C/C++] Clear the log file.

int LJMError;
LJMError = LJM_ResetLog();

2.9 - Low-level Functions

2.9.1 - Feedback Functions
Summary

The low-level Feedback functions LJM_AddressesToMBFB, LJM_MBFBComm, and LJM_UpdateValues may be used together or separately to perform
Modbus Feedback (MBFB) operations on the LabJack device.

LJM_AddressesToMBFB creates a MBFB packet
LJM_MBFBComm sends a MBFB packet to the device and receives a MBFB response packet
LJM_UpdateValues converts read values in a MBFB response packet

Want Something Simpler?

For simpler functions that do the same thing as the low-level Feedback functions, see the Single Value Functions or the Multiple Value Functions.

Examples

[C/C++] Write to DAC0, read from AIN0 using LJM_AddressesToMBFB, LJM_MBFBComm, and LJM_UpdateValues

/**
 * Name: stepwise_feedback.c
 * Desc: Shows how to read from a few analog inputs
 * using a LabJack and the cross platform LabJackM
 * Library using the C-style API
**/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <LabJackM.h>

#include "LJM_Utilities.h"

int main()
{
 int handle, err;

 // Just something that isn't positive so we know
 // errAddress has or hasn't been modified
 int errAddress = -2;

 // Set up the data
 enum { NUM_FRAMES = 2 };
 int numFrames = NUM_FRAMES;

 const char * ADDRESS_STRINGS[NUM_FRAMES] =
 {"DAC0", "AIN0"};
 const double VALUE_0 = 1.23;

31 Jul 2019

https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/feedback-functions/ljmaddressestombfb
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/feedback-functions/ljmmbfbcomm
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/feedback-functions/ljmupdatevalues
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/feedback-functions/ljmaddressestombfb
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/feedback-functions/ljmmbfbcomm
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/feedback-functions/ljmupdatevalues
https://labjack.com/support/ljm/users-guide/function-reference/single-value-functions
https://labjack.com/support/ljm/users-guide/function-reference/multiple-value-functions

 const double VALUE_1 = 0.0;

 int aAddresses[NUM_FRAMES];
 int aTypes[NUM_FRAMES];
 int aWrites[NUM_FRAMES] = {LJM_WRITE, LJM_READ };
 int aNumValues[NUM_FRAMES] = {1, 1 };

 enum { NUM_VALUES = 2 };
 double aValues[NUM_VALUES] = {VALUE_0, VALUE_1 };

 int MaxBytesPerMBFB = LJM_DEFAULT_FEEDBACK_ALLOCATION_SIZE;
 unsigned char aMBFB[LJM_DEFAULT_FEEDBACK_ALLOCATION_SIZE];

 unsigned char UnitID = LJM_DEFAULT_UNIT_ID;

 // Fill out aAddresses
 err = LJM_NamesToAddresses(NUM_FRAMES, ADDRESS_STRINGS,
 aAddresses, aTypes);
 ErrorCheck(err, "LJM_NamesToAddresses");

 // Open first found LabJack
 err = LJM_Open(LJM_dtANY, LJM_ctANY, "LJM_idANY", &handle);
 ErrorCheck(err, "LJM_Open");

 PrintDeviceInfoFromHandle(handle);

 err = LJM_AddressesToMBFB(MaxBytesPerMBFB, aAddresses,
 aTypes, aWrites, aNumValues, aValues, &numFrames,
 aMBFB);
 ErrorCheck(err, "LJM_AddressesToMBFB");

 printf("\nLJM_MBFBComm will overwrite the Transaction ID and Unit ID of the following command\n");
 PrintFeedbackCommand(aMBFB, "Feedback command");

 // Send the command and receive the response
 err = LJM_MBFBComm(handle, UnitID, aMBFB, &errAddress);
 ErrorCheckWithAddress(err, errAddress, "LJM_MBFBComm");

 PrintFeedbackResponse(aMBFB, "Feedback response");

 // Get the data back in a readable form
 err = LJM_UpdateValues(aMBFB, aTypes, aWrites,
 aNumValues, numFrames, aValues);
 ErrorCheck(err, "LJM_UpdateValues");

 // Print results
 printf("%s: %f\n", ADDRESS_STRINGS[1], aValues[1]);

 // Close
 err = LJM_Close(handle);
 ErrorCheck(err, "LJM_Close");

 WaitForUserIfWindows();

 return LJME_NOERROR;
}

Possible output:

deviceType: LJM_dtT7
connectionType: LJM_ctUSB
serialNumber: 470010117
pipe: 0
The maximum number of bytes you can send to or receive from this device in one packet is 64 bytes.

LJM_MBFBComm will overwrite the Transaction ID and Unit ID of the following command
Feedback command:
 Header: 0x00 0x00 0x00 0x00 0x00 0x0e 0x01 0x4c
 frame 00: 0x01 0x03 0xe8 0x02 0x3f 0x9d 0x70 0xa4
 frame 01: 0x00 0x00 0x00 0x02
Feedback response:
 Header: 0x01 0x89 0x00 0x00 0x00 0x06 0x01 0x4c
 data: 0x40 0x9a 0xfd 0x5f
AIN0: 4.843429

2.9.1.1 - AddressesToMBFB
Creates a Modbus Feedback (MBFB) packet. This packet can be sent to the device using LJM_MBFBComm.

Syntax

LJM_ERROR_RETURN LJM_AddressesToMBFB(
 int MaxBytesPerMBFB,
 int * aAddresses,
 int * aTypes,
 int * aWrites,

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/feedback-functions/ljmmbfbcomm

 int * aNumValues,
 double * aValues,
 int * NumFrames,
 unsigned char * aMBFBCommand)

Parameters

MaxBytesPerMBFB [in]
The maximum number of bytes that the Feedback command is allowed to consist of. It is highly recommended to pass the size of the aMBFBCommand
buffer as MaxBytesPerMBFB to prevent buffer overflow. See LJM_DEFAULT_FEEDBACK_ALLOCATION_SIZE.

aAddresses [in]
An array of size NumFrames representing the register addresses to read from or write to for each frame.

aTypes [in]
An array of size NumFrames containing the data type of each value sent/received for each frame.
Types - 0:UINT16, 1:UINT32, 2:INT32, 3:FLOAT32

aWrites [in]
An array of size NumFrames containing the desired type of access for each frame, which is either read(0) or write(1).

aNumValues [in]
An array of size NumFrames that contains the number of consecutive values for each frame. Use 1 for a single (non-consecutive) value.

aValues [in]
An array of values to be transferred to/from the device. This array contains all the values for all the frames, so its size should be the sum of all elements
in the aNumValues array. Each write value will be converted to its corresponding frame type defined in aTypes. LJM_UpdateValues can be used later to
update this array with read values.

NumFrames [in/out]
Input as the number of frames being created. Output as the number of frames that were successfully put into the aMBFBCommand buffer, which may be
less or equal to the input number. If NumFrames is altered by this function, LJM_AddressesToMBFB will return the warning code
LJME_FRAMES_OMITTED_DUE_TO_PACKET_SIZE.

aMBFBCommand [out]
The resultant Modbus Feedback command. Transaction ID and Unit ID will be blanks that LJM_MBFBComm will fill in.

Returns

LJM errorcodes or 0 for no error.

Remarks

The LJM_NamesToAddresses and LJM_NameToAddress functions may be used to initialize the aAddresses and aTypes parameters from register names.

Examples

Please see the Low-level Feedback Functions overview page for an example.

2.9.1.2 - MBFBComm
Sends a Feedback command and receives a Feedback response, parsing the response for obvious errors. The Feedback command may be generated using
LJM_AddressesToMBFB and the Feedback response may be parsed with the LJM_UpdateValues function.

Syntax

LJM_ERROR_RETURN LJM_MBFBComm(
 int Handle,
 unsigned char UnitID,
 unsigned char * aMBFB,
 int * ErrorAddress)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

UnitID [in]
The ID of the specific unit that the Feedback command should be sent to. Use LJM_DEFAULT_UNIT_ID (1) unless the device documentation instructs
otherwise.

aMBFB [in/out]
As an input parameter, it is a valid Feedback command, which may be generated using LJM_AddressesToMBFB.

31 Jul 2019

https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/utility/ljmnamestoaddresses
https://labjack.com/support/ljm/users-guide/function-reference/utility/ljmnametoaddress
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/feedback-functions
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/feedback-functions/ljmaddressestombfb
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/feedback-functions/ljmupdatevalues
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/feedback-functions/ljmaddressestombfb

As an output parameter, it is a Feedback response, which may be an error response.

ErrorAddress [out]
If error, the address responsible for causing an error.

Returns

LJM errorcodes or 0 for no error.

Remarks

LJM_MBFBComm provides device synchronization within LJM.

Examples

Please see the Low-level Feedback Functions overview page for an example.

2.9.1.3 - UpdateValues
Converts read values in a Modbus Feedback response packet.

Syntax

LJM_ERROR_RETURN LJM_UpdateValues(
 unsigned char * aMBFBResponse,
 const int * aTypes,
 const int * aWrites,
 const int * aNumValues,
 int NumFrames,
 double * aValues)

Parameters

Note that some of these parameters may be used directly from LJM_AddressesToMBFB and/or LJM_MBFBComm.

aMBFBResponse [in]
A valid Feedback response. May be used directly from LJM_MBFBComm.

aTypes [in]
An array of size NumFrames containing the data type of each value sent/received for each frame. May be used directly from LJM_AddressesToMBFB.
Types - 0:UINT16, 1:UINT32, 2:INT32, 3:FLOAT32

aWrites [in]
An array of size NumFrames containing the desired type of access for each frame, which is either read(0) or write(1). May be used directly from
LJM_AddressesToMBFB.

aNumValues [in]
An array of size NumFrames that contains the number of consecutive values for each frame. Use 1 for a single (non-consecutive) value. May be used
directly from LJM_AddressesToMBFB.

NumFrames [in]
The number of frames. May be used from LJM_AddressesToMBFB after dereferencing.

aValues [out]
An array that contains all the values for all the frames, so its size should be the sum of all elements in the aNumValues array. Each read value is
converted to its corresponding frame type defined in aTypes.

Returns

LJM errorcodes or 0 for no error.

Remarks

The Type Conversion functions may also be used to read bytes to types.

Examples

Please see the Low-level Feedback Functions overview page for an example.

2.9.2 - Raw Byte Functions

31 Jul 2019

https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/feedback-functions
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/feedback-functions/ljmaddressestombfb
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/feedback-functions/ljmmbfbcomm
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/type-conversion-functions
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/feedback-functions

Raw Byte Functions Overview

These functions do not provide full device synchronization within LJM. They are provided for advanced users familiar with Modbus that want to control the
exact bytes sent/received.

2.9.2.1 - ReadRaw
Attempts to receive unaltered bytes from a device.

Syntax

LJM_ERROR_RETURN LJM_ReadRaw(
 int Handle,
 unsigned char * Data,
 int NumBytes)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

Data [Out]
Buffer to be filled with bytes from the read

NumBytes [out]
The number of bytes that were read, or -1 for error.

Returns

LJM errorcode or 0 for no error.

Remarks

Must be used in conjunction with LJM_WriteRaw.

2.9.2.2 - WriteRaw
Attempts to send unaltered bytes to a device.

Syntax

LJM_ERROR_RETURN LJM_WriteRaw(
 int Handle,
 const unsigned char * Data,
 int NumBytes)

Parameters

Handle [in]
A device handle. The handle is a connection ID for an active device. Generate a handle with LJM_Open or LJM_OpenS.

Data [in]
Buffer of bytes to send to the device.

NumBytes [in]
The number of bytes in Data.

Returns

LJM errorcode or 0 for no error.

Remarks

Must be used in conjunction with LJM_ReadRaw.

2.9.3 - Type Conversion Functions

Type Conversion Functions Overview

Byte/Value Conversion Functions

These functions are not needed except for applications performing raw bytes manipulation, as with the Raw Byte functions.

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/raw-byte-functions/ljmwriteraw
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/raw-byte-functions/ljmreadraw
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/raw-byte-functions

Byte-to-value

LJM_ByteArrayToFLOAT32
LJM_ByteArrayToINT32
LJM_ByteArrayToUINT32
LJM_ByteArrayToUINT16

Value-to-byte

LJM_FLOAT32ToByteArray
LJM_INT32ToByteArray
LJM_UINT32ToByteArray
LJM_UINT16ToByteArray

2.9.3.1 - ByteArrayToFLOAT32
Converts an array of bytes to 32-bit float values, performing automatic endian conversions if necessary.

This function is not needed except for applications performing raw byte manipulation, as with the Raw Byte functions.

Syntax

LJM_ERROR_RETURN LJM_ByteArrayToFLOAT32(
 const unsigned char * aBytes,
 int RegisterOffset,
 int NumFLOAT32,
 float * aFLOAT32)

Parameters

aBytes [in]
The bytes to be converted.

RegisterOffset [in]
The register offset to get the values from in aBytes.

NumFLOAT32 [in]
The number of values to convert.

aFLOAT32 [out]
The converted bytes in 32-bit float value form.

Returns

LJM errorcode or 0 for no error.

Remarks

See also: LJM_FLOAT32ToByteArray

2.9.3.2 - ByteArrayToINT32
Converts an array of bytes to 32-bit integer values, performing automatic endian conversions if necessary.

This function is not needed except for applications performing raw byte manipulation, as with the Raw Byte functions.

Syntax

LJM_ERROR_RETURN LJM_ByteArrayToINT32(
 const unsigned char * aBytes,
 int RegisterOffset,
 int NumINT32,
 int * aINT32)

Parameters

aBytes [in]
The bytes to be converted.

RegisterOffset [in]
The register offset to get the values from in aBytes.

NumINT32 [in]
The number of values to convert.

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/ljmbytearraytofloat32
https://labjack.com/support/ljm/users-guide/function-reference/ljmbytearraytoint32
https://labjack.com/support/ljm/users-guide/function-reference/ljmbytearraytouint32
https://labjack.com/support/ljm/users-guide/function-reference/ljmbytearraytouint16
https://labjack.com/support/ljm/users-guide/function-reference/ljmfloat32tobytearray
https://labjack.com/support/ljm/users-guide/function-reference/ljmint32tobytearray
https://labjack.com/support/ljm/users-guide/function-reference/ljmuint32tobytearray
https://labjack.com/support/ljm/users-guide/function-reference/ljmuint16tobytearray
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/raw-byte-functions
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmfloat32tobytearray
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/raw-byte-functions

aINT32 [out]
The converted bytes in 32-bit integer value form.

Returns

LJM errorcode or 0 for no error.

Remarks

See also: LJM_INT32ToByteArray

2.9.3.3 - ByteArrayToUINT16
Converts an array of bytes to 16-bit unsigned integer values, performing automatic endian conversions if necessary.

This function is not needed except for applications performing raw byte manipulation, as with the Raw Byte functions.

Syntax

LJM_ERROR_RETURN LJM_ByteArrayToUINT16(
 const unsigned char * aBytes,
 int RegisterOffset,
 int NumUINT16,
 unsigned int * aUINT16)

Parameters

aBytes [in]
The bytes to be converted.

RegisterOffset [in]
The register offset to get the values from in aBytes.

NumUINT16 [in]
The number of values to convert.

aUINT16 [out]
The converted bytes in 16-bit unsigned integer value form.

Returns

LJM errorcode or 0 for no error.

Remarks

See also: LJM_UINT16ToByteArray

2.9.3.4 - ByteArrayToUINT32
Converts an array of bytes to 32-bit unsigned integer values, performing automatic endian conversions if necessary.

This function is not needed except for applications performing raw byte manipulation, as with the Raw Byte functions.

Syntax

LJM_ERROR_RETURN LJM_ByteArrayToUINT32(
 const unsigned char * aBytes,
 int RegisterOffset,
 int NumUINT32,
 unsigned int * aUINT32)

Parameters

aBytes [in]
The bytes to be converted.

RegisterOffset [in]
The register offset to get the values from in aBytes.

NumUINT32 [in]
The number of values to convert.

aUINT32 [out]
The converted bytes in 32-bit unsigned integer value form.

31 Jul 2019

https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmint32tobytearray
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/raw-byte-functions
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmuint16tobytearray
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/raw-byte-functions

Returns

LJM errorcode or 0 for no error.

Remarks

See also: LJM_UINT32ToByteArray

2.9.3.5 - FLOAT32ToByteArray
Converts an array of 32-bit float values to bytes, performing automatic endian conversions if necessary.

This function is not needed except for applications performing raw byte manipulation, as with the Raw Byte functions.

Syntax

LJM_ERROR_RETURN LJM_FLOAT32ToByteArray(
 const float * aFLOAT32,
 int RegisterOffset,
 int NumFLOAT32,
 unsigned char * aBytes)

Parameters

aFLOAT32 [in]
The array of values to be converted to bytes.

RegisterOffset [in]
The register offset to put the converted values in aBytes.

NumFLOAT32 [in]
The number of values to convert.

aBytes [out]
The converted values in byte form.

Returns

LJM errorcode or 0 for no error.

Remarks

See also: LJM_ByteArrayToFLOAT32

2.9.3.6 - INT32ToByteArray
Converts an array of 32-bit integer values to bytes, performing automatic endian conversions if necessary.

This function is not needed except for applications performing raw byte manipulation, as with the Raw Byte functions.

Syntax

LJM_ERROR_RETURN LJM_INT32ToByteArray(
 const int * aINT32,
 int RegisterOffset,
 int NumINT32,
 unsigned char * aBytes)

Parameters

aINT32 [in]
The array of values to be converted to bytes.

RegisterOffset [in]
The register offset to put the converted values in aBytes.

NumINT32 [in]
The number of values to convert.

aBytes [out]
The converted values in byte form.

Returns

LJM errorcode or 0 for no error.

31 Jul 2019

https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmuint32tobytearray
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/raw-byte-functions
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmbytearraytofloat32
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/raw-byte-functions
https://labjack.com/support/ljm/users-guide/error-codes

Remarks

See also: LJM_ByteArrayToINT32

2.9.3.7 - UINT16ToByteArray
Converts an array of 16-bit unsigned integer values to bytes, performing automatic endian conversions if necessary.

This function is not needed except for applications performing raw byte manipulation, as with the Raw Byte functions.

Syntax

LJM_ERROR_RETURN LJM_UINT16ToByteArray(
 const unsigned int * aUINT16,
 int RegisterOffset,
 int NumUINT16,
 unsigned char * aBytes)

Parameters

aUINT16 [in]
The array of values to be converted to bytes.

RegisterOffset [in]
The register offset to put the converted values in aBytes.

NumUINT16 [in]
The number of values to convert.

aBytes [out]
The converted values in byte form.

Returns

LJM errorcode or 0 for no error.

Remarks

See also: LJM_ByteArrayToUINT16

2.9.3.8 - UINT32ToByteArray
Converts an array of 32-bit unsigned int values to bytes, performing automatic endian conversions if necessary.

This function is not needed except for applications performing raw byte manipulation, as with the Raw Byte functions.

Syntax

LJM_ERROR_RETURN LJM_UINT32ToByteArray(
 const unsigned int * aUINT32,
 int RegisterOffset,
 int NumUINT32,
 unsigned char * aBytes)

Parameters

aUINT32 [in]
The array of values to be converted to bytes.

RegisterOffset [in]
The register offset to put the converted values in aBytes.

NumUINT32 [in]
The number of values to convert.

aBytes [out]
The converted values in byte form.

Returns

LJM errorcode or 0 for no error.

Remarks

See also: LJM_ByteArrayToUINT32

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/ljmbytearraytoint32
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/raw-byte-functions
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmbytearraytouint16
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/raw-byte-functions
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/ljmbytearraytouint32

2.10 - Library Configuration Functions

Library Configuration Functions Overview

This section describes how to configure the LJM library's behavior and interpretation constants. Whenever LJM is started up, it is loaded with default values, so
any desired configurations must be applied each time LJM is started.

Behavioral Parameters

The functions LJM_WriteLibraryConfigS and LJM_WriteLibraryConfigStringS are good for setting a few configurations, while LJM_LoadConfigurationFile is
more convenient for setting many configurations or for sharing a configuration between programs.

Interpretation Constants

LJM also provides interpretation of Modbus map constants and error constants.

The Modbus map constants affect Name functions that use Name interpretation, such as LJM_eReadName. These Name functions have "Name" in their name
and have a "const char * Name" parameter or "const char ** aNames" parameter. For each name passed to one of these functions, it is interpreted according
to the loaded constants. The Modbus map constants affect the behavior of other functions as well, such as when LJM_OLD_FIRMWARE_CHECK is enabled.

The Error constants affects the LJM_ErrorToString function. The loaded Error constants will be interpreted from an integer error code to a error string. Custom
application error codes can be loaded in the 3900-3999 range.

�
Configuration Parameters

The following parameters are constants defined in the header file LabJackM.h. Each parameter's name is the same as it's value; e.g.
LJM_LIBRARY_VERSION is a constant of the string "LJM_LIBRARY_VERSION".

Informational parameters:

LJM_LIBRARY_VERSION - The current LJM version. (Read-only)

Timeout parameters:

LJM_SEND_RECEIVE_TIMEOUT_MS - How long LJM waits for a packet to be sent or received.
LJM_OPEN_TCP_DEVICE_TIMEOUT_MS - How long LJM waits for a device to respond to a connection request.

Device operation parameters:

LJM_ALLOWS_AUTO_MULTIPLE_FEEDBACKS - Whether or not LJM will automatically perform multiple Feedback commands when the desired
operations would exceed the maximum packet length.
LJM_ALLOWS_AUTO_CONDENSE_ADDRESSES - Whether or not LJM will automatically condense congruent address reads/writes into array
reads/writes.
LJM_RETRY_ON_TRANSACTION_ID_MISMATCH - Whether or not LJM automatically retries an operation if an LJME_TRANSACTION_ID_ERR
occurs.
LJM_OLD_FIRMWARE_CHECK - Whether or not LJM will check the Modbus constants file (see LJM_MODBUS_MAP_CONSTANTS_FILE) to make
sure the firmware of the current device is compatible with the Modbus register(s) being read from or written to.

�
Constants file parameters:

LJM_MODBUS_MAP_CONSTANTS_FILE - The absolute or relative path of the constants file to use for that use the LJM Name functionality.
LJM_ERROR_CONSTANTS_FILE - The absolute or relative path of the constants file to use for LJM_ErrorToString.
LJM_CONSTANTS_FILE - For setting both LJM_MODBUS_MAP_CONSTANTS_FILE and LJM_ERROR_CONSTANTS_FILE. (Write-only)

�
Debug logger parameters:

LJM_DEBUG_LOG_FILE - The absolute or relative path of the file to output log messages to.
LJM_DEBUG_LOG_MODE - What conditions will cause LJM to output log messages.
LJM_DEBUG_LOG_LEVEL - What priority of log messages are output.
LJM_DEBUG_LOG_BUFFER_MAX_SIZE - How many messages the log buffer can hold.
LJM_DEBUG_LOG_SLEEP_TIME_MS - How often the logger thread will run.
LJM_DEBUG_LOG_FILE_MAX_SIZE - The maximum size of the log file in number of characters.

Stream parameters:

LJM_STREAM_RECEIVE_TIMEOUT_MODE - Sets how stream data collection should time out.
LJM_STREAM_RECEIVE_TIMEOUT_MS - Manually sets the timeout for LJM's stream data collection.
LJM_STREAM_SCANS_RETURN - How LJM_eStreamRead behaves when the full read amount is not ready.
LJM_STREAM_TRANSFERS_PER_SECOND - How often stream threads attempt to read from the stream.

�
Altering Configurations

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigStringS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile
http:///tmp/wktemp-4618c05e-1ce1-46d2-b812-b5bc008895f7.html#configParams
https://labjack.com/support/ljm/users-guide/constants/ljmlibraryversion
https://labjack.com/support/ljm/users-guide/constants/ljmsendreceivetimeoutms
https://labjack.com/support/ljm/users-guide/constants/ljmopentcpdevicetimeoutms
https://labjack.com/support/ljm/users-guide/constants/ljmallowsautomultiplefeedbacks
https://labjack.com/support/ljm/users-guide/constants/ljmallowsautocondenseaddresses
https://labjack.com/support/ljm/users-guide/constants/ljmoldfirmwarecheck
https://labjack.com/support/ljm/users-guide/constants/ljmmodbusmapconstantsfile
http:///tmp/wktemp-4618c05e-1ce1-46d2-b812-b5bc008895f7.html#constantsfiles
https://labjack.com/support/ljm/users-guide/constants/ljmmodbusmapconstantsfile
https://labjack.com/support/ljm/users-guide/constants/ljmerrorconstantsfile
https://labjack.com/support/ljm/users-guide/constants/ljmconstantsfile
http:///tmp/wktemp-4618c05e-1ce1-46d2-b812-b5bc008895f7.html#loggerParams
https://labjack.com/support/ljm/users-guide/constants/ljmdebuglogfile
https://labjack.com/support/ljm/users-guide/constants/ljmdebuglogmode
https://labjack.com/support/ljm/users-guide/constants/ljmdebugloglevel
https://labjack.com/support/software/api/ljm/constants/ljmstreamreceivetimeoutmode
https://labjack.com/support/software/api/ljm/constants/ljmstreamreceivetimeoutms
https://labjack.com/support/ljm/users-guide/constants/ljmstreamscansreturn
https://labjack.com/support/ljm/users-guide/constants/ljmstreamtransferspersecond
http:///tmp/wktemp-4618c05e-1ce1-46d2-b812-b5bc008895f7.html#alteringConfigs

Functions for setting the behavioral configurations of LJM:

LJM_WriteLibraryConfigS - Set one numerical configuration value.
LJM_WriteLibraryConfigStringS - Set one string-based configuration value.
LJM_LoadConfigurationFile - Load all the configuration values in a specified file.

Altering Modbus Map Constants or Error Constants

Functions for setting the Modbus and/or Error interpretation maps:

LJM_LoadConstants - Manually loads or reloads the constants file.
LJM_LoadConstantsFromFile - Loads a specified file as the Modbus map and Error constants.
LJM_LoadConstantsFromString - Loads a string as the Modbus map and/or Error constants.

Reading Configurations

Functions for getting the behavioral configurations of LJM:

LJM_ReadLibraryConfigS - Read one numerical configuration value.
LJM_ReadLibraryConfigStringS - Read one string-based configuration value.

2.10.1 - GetSpecificIPsInfo
Get information about whether the specific IPs file was parsed successfully.

Syntax

LJM_ERROR_RETURN LJM_GetSpecificIPsInfo(
 int * InfoHandle,
 const char ** Info)

Parameters

InfoHandle [out]
A handle to Info that should be passed to LJM_CleanInfo after Info has been read.

Info [out]
A pointer to a JSON char * (allocated by LJM) describing the state of the specific IPs.

Info Semantics

{
 "errorCode": Integer LJME_ error code. 0 indicates no error
 "IPs": Array of strings - the presentation-format IPs
 "message": Human-readable string description of success/failure
 "filePath": String absolute or relative file path
 "invalidIPs": Array of strings - the unparsable lines
}

Returns

LJM errorcodes or 0 for no error. This may be LJME_CONFIG_PARSING_ERROR even if some addresses in the specific IP file were parsed without error.

2.10.2 - LoadConfigurationFile
Load all the configuration values in a specified file.

For the full list of possible parameters, see Configuration Parameters. Alternately, see the ljm_startup_configs.json file that was installed along with LJM.
LJM_LoadConfigurationFile parses files according to the semantics of ljm_startup_configs.json. ljm_startup_configs.json can be found in the default constants
file location (see Constants file parameters).

Syntax

LJM_ERROR_RETURN LJM_LoadConfigurationFile(
 const char * FileName)

Parameters

FileName [in]
A relative or absolute file location. Must null-terminate. "default" maps to the default configuration file ljm_startup_config.json in the constants file location
(see Constants file parameters).

Returns

LJM errorcodes or 0 for no error.

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigStringS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConstants
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConstantsFromFile
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConstantsFromString
https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigStringS
https://labjack.com/support/software/api/ljm/constants/SpecificIPsConfigs
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions#configParams
https://labjack.com/support/software/api/ljm/function-reference/LJMStartupConfigs
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions#constantsfiles
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions#constantsfiles
https://labjack.com/support/ljm/users-guide/error-codes

LJME_CONFIG_FILE_NOT_FOUND (1289): FileName did not give the location to a readable file.

LJME_CONFIG_PARSING_ERROR (1290): The file at location FileName did not contain a valid configuration file.

Remarks

To write a numerical configuration parameter, see LJM_WriteLibraryConfigS.

To write a string-based configuration parameter, see LJM_WriteLibraryConfigStringS.

Example

[C/C++] Load the configuration file "ljm_verbose_debug_log_configs.json"

int LJMError = LJM_LoadConfigurationFile("ljm_verbose_debug_log_configs.json");

2.10.3 - LoadConstants
Manually loads or reloads the constants file.

This step is automatic. This function does not need to be called before any functions that use LJM's Modbus interpretation or Error interpretation.
LJM_LoadConstantsFromFile is provided so that changes to the constants file can be loaded.

Syntax

LJM_VOID_RETURN LJM_LoadConstants()

Returns

Nothing.

Remarks

To specify a constants file to load, see LJM_LoadConstantsFromFile.

2.10.4 - LoadConstantsFromFile
Loads a specified file as the Modbus map and Error constants.

Syntax

LJM_ERROR_RETURN LJM_LoadConstantsFromFile(
 const char * FileName)

Parameters

FileName [in]
The absolute or relative file path to load as the constants. Must null-terminate. "default" maps to the default configuration file ljm_startup_config.json in
the constants file location (see Constants file parameters).

Returns

LJM errorcodes or 0 for no error.

LJME_CONSTANTS_FILE_NOT_FOUND (1292): FileName did not point to a readable file location.

LJME_INVALID_CONSTANTS_FILE (1293): The file located at FileName was not a valid constants file. LJM_ErrorToString outputs a specific error message.

Remarks

LJM_LoadConstantsFromFile is an alias for executing LJM_WriteLibraryConfigStringS with LJM_CONSTANTS_FILE as the Parameter of
LJM_WriteLibraryConfigStringS and FileName as the String parameter of LJM_WriteLibraryConfigStringS:

LJM_WriteLibraryConfigStringS(LJM_CONSTANTS_FILE, FileName)

To load the Modbus constants and error constants separately, use LJM_WriteLibraryConfigStringS with LJM_MODBUS_MAP_CONSTANTS_FILE or
LJM_ERROR_CONSTANTS_FILE as the Parameter.

Example

[C/C++] Load the constants file "custom_modbus_map.json"

char ErrorString[LJM_MAX_NAME_SIZE];
int LJMError;
LJMError = LJM_LoadConstantsFromFile("custom_modbus_map.json");

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigStringS
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions/ljmloadconstantsfromfile
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions#constantsfiles
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigStringS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigStringS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigStringS

if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_LoadConstantsFromFile error: %s\n", ErrorString);
}

2.10.5 - LoadConstantsFromString
Loads a string as the Modbus map and/or Error constants.

Syntax

LJM_ERROR_RETURN LJM_LoadConstantsFromString(
 const char * JsonString)

Parameters

JsonString [in]
A string in JSON format containing the constants to load. Must null-terminate. If JsonString contains a JSON array named "registers", that array is loaded
as the new Modbus map constants and the previous Modbus map constants are unloaded. If JsonString contains a JSON array named "errors", that
array is loaded as the new Error constants and the previous Error constants are unloaded.

Returns

LJM errorcodes or 0 for no error.

LJME_INVALID_CONSTANTS_FILE (1293): The constants in JsonString was not a valid constants file. LJM_ErrorToString outputs a specific error message.

Remarks

To load constants from a file, see LJM_LoadConstantsFromFile.

Example

[C/C++] Load a small constants string

char ErrorString[LJM_MAX_NAME_SIZE];
int LJMError = LJM_LoadConstantsFromString(
 "{"
 " \"registers\":"
 " ["
 " {\"address\":600, \"name\":\"STRING_AIN#(0:254)\", \"type\":\"FLOAT32\","
 " \"devices\":[{\"device\":\"T7\", \"fwmin\":1.0001}],"
 " \"readwrite\":\"R\", \"tags\":[\"AIN\"], \"altnames\":[\"\"]},"
 " {\"address\":4321, \"name\":\"STRING_SERIAL_NUMBER\", \"type\":\"UINT32\","
 " \"devices\":[{\"device\":\"T7\", \"fwmin\":1.0001}],"
 " \"readwrite\":\"R\", \"tags\":[\"CONFIG\"], \"altnames\":[\"\"]}"
 "],"
 " \"errors\":"
 " ["
 " {\"error\":0, \"string\":\"SUCCESS\"},"
 " {\"error\":3900, \"string\":\"UNKNOWN_APPLICATION_ERROR\"}"
 "]"
 "}"
);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_LoadConstantsFromString error: %s\n", ErrorString);
}

2.10.6 - ReadLibraryConfigS
Read one numerical configuration value.

Syntax

LJM_ERROR_RETURN LJM_ReadLibraryConfigS(
 const char * Parameter,
 double * Value)

Parameters

Parameter [in]
The name of the configuration setting, see configuration parameters page. Not case-sensitive. Must null-terminate. For the full list of possible parameters,
see Configuration Parameters.

Value [out]
The return value representing the current value of Parameter.

31 Jul 2019

https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConstantsFromFile
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions#configParams

Returns

LJM errorcodes or 0 for no error.

Remarks

To write a numerical configuration parameter, see LJM_WriteLibraryConfigS.

To read a string-based configuration parameter, see LJM_ReadLibraryConfigStringS.

Example

[C/C++] Read LJM_SEND_RECEIVE_TIMEOUT_MS

char ErrorString[LJM_MAX_NAME_SIZE];
double Value;
int LJMError = LJM_ReadLibraryConfigS(LJM_SEND_RECEIVE_TIMEOUT_MS, &Value);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_ReadLibraryConfigS error: %s\n", ErrorString);
}
printf("LJM_SEND_RECEIVE_TIMEOUT_MS is currently %f\n", Value);

2.10.7 - ReadLibraryConfigStringS
Read one string-based configuration value.

Syntax

LJM_ERROR_RETURN LJM_ReadLibraryConfigStringS(
 const char * Parameter,
 double * String)

Parameters

Parameter [in]
The name of the configuration setting, see configuration parameters page. Not case-sensitive. Must null-terminate. For the full list of possible parameters,
see Configuration Parameters.

String [out]
The return value string representing the current value of Parameter. Must be allocated to size LJM_MAX_NAME_SIZE.

Returns

LJM errorcodes or 0 for no error.

Remarks

To write a string-based configuration parameter, see LJM_WriteLibraryConfigStringS.

To read a numerical configuration parameter, see LJM_ReadLibraryConfigS.

Example

[C/C++] Read LJM_DEBUG_LOG_FILE

char ErrorString[LJM_MAX_NAME_SIZE];
char String[LJM_MAX_NAME_SIZE];
int LJMError = LJM_ReadLibraryConfigStringS(LJM_DEBUG_LOG_FILE, String);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_ReadLibraryConfigStringS error: %s\n", ErrorString);
}
printf("LJM_DEBUG_LOG_FILE is currently %s\n", String);

2.10.8 - WriteLibraryConfigS
Write a numerical LJM behavioral configuration value.

Syntax

LJM_ERROR_RETURN LJM_WriteLibraryConfigS(
 const char * Parameter,
 double Value)

Parameters

31 Jul 2019

https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigStringS
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions#configParams
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigStringS
https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigS

Parameter [in]
The name of the configuration setting, see configuration parameters page. Not case-sensitive. Must null-terminate. For the full list of possible parameters,
see Configuration Parameters.

Value [in]
The config value to apply to Parameter.

Returns

LJM errorcodes or 0 for no error.

Remarks

To write a string-based configuration parameter, see LJM_WriteLibraryConfigStringS.

To load all the configuration values in a specified file, see LJM_LoadConfigurationFile.

Example

[C/C++] Set LJM_SEND_RECEIVE_TIMEOUT_MS to 500 milliseconds

int LJMError = LJM_WriteLibraryConfigS(LJM_SEND_RECEIVE_TIMEOUT_MS, 500);

2.10.9 - WriteLibraryConfigStringS
Write a string-based LJM behavioral configuration value.

Syntax

LJM_ERROR_RETURN LJM_WriteLibraryConfigStringS(
 const char * Parameter,
 const char * String)

Parameters

Parameter [in]
The name of the configuration setting, see the configuration parameters page. Not case-sensitive. Must null-terminate. For the full list of possible
parameters, see Configuration Parameters.

String [in]
The config value string to apply to Parameter. Must null-terminate. Must be of size LJM_MAX_NAME_SIZE or less, including the null-terminator.

Returns

LJM errorcodes or 0 for no error.

Remarks

To write a numerical configuration parameter, see LJM_WriteLibraryConfigS.

To load all the configuration values in a specified file, see LJM_LoadConfigurationFile.

Example

[C/C++] Set LJM_DEBUG_LOG_FILE to "new_log_file.log"

int LJMError = LJM_WriteLibraryConfigStringS(LJM_DEBUG_LOG_FILE, "new_log_file.log");

2.10.10 - GetDeepSearchInfo
Get information about whether the Deep Search file was parsed successfully.

Syntax

LJM_ERROR_RETURN LJM_GetDeepSearchInfo(
 int * InfoHandle,
 const char ** Info)

Parameters

InfoHandle [out]
A handle to Info that should be passed to LJM_CleanInfo after Info has been read.

Info [out]
A pointer to a JSON char * (allocated by LJM) describing the state of the Deep Search.

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions#configParams
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigStringS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions#configParams
https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile
https://labjack.com/support/software/api/ljm/constants/DeepSearchConfigs

Info Semantics

{
 "errorCode": Integer LJME_ error code. 0 indicates no error
 "IPs": Array of strings - the presentation-format IPs
 "message": Human-readable string description of success/failure
 "filePath": String absolute or relative file path
 "invalidIPs": Array of strings - the unparsable lines
}

Returns

LJM errorcodes or 0 for no error. This may be LJME_CONFIG_PARSING_ERROR even if some addresses in the Deep Search file were parsed without error.

Easy Functions
Documentation has moved. Please see:

Single Value Functions
Multiple Value Functions
Stream Functions

Summary

This section describes how to obtain data from a device using the Easy functions. Modbus registers have both a name and an address, so the Easy functions
are categorized accordingly. For instance, analog input 3 has an address of 6, and is named "AIN3". Most people will find the name functions quite
convenient.

Additionally, there are single and multiple value access functions. The single value functions access a single data value, and the multiple value functions
access an array of data values. The advantage to using the multiple value functions is that the number of function calls can be reduced, and overall
communication traffic is more efficient.

The many variants of Easy functions are provided to afford users maximum flexibility. It should be noted that nearly all device functionality can be achieved
with only 2 functions: LJM_eReadName, and LJM_eWriteName, so start with these functions.

Address Functions

Address functions access data through an address, such as 10 for analog input 5.

LJM_eWriteAddress - Write one value specified by address.
LJM_eReadAddress - Read one value specified by address.
LJM_eWriteAddresses - Write values specified by addresses.
LJM_eReadAddresses - Read values specified by addresses.
LJM_eWriteAddressArray - Write consecutive values specified by address.
LJM_eReadAddressArray - Read consecutive values specified by address.
LJM_eAddresses - Write/Read values specified by addresses and array sizes.

Name Functions

Name functions access data through a name, such as "AIN5" for analog input 5.

LJM_eWriteName - Write one value specified by name.
LJM_eReadName - Read one value specified by name.
LJM_eWriteNames - Write values specified by names.
LJM_eReadNames - Read values specified by names.
LJM_eWriteNameArray - Write consecutive values specified by name.
LJM_eReadNameArray - Read consecutive values specified by name.
LJM_eNames - Write/Read values specified by names and array sizes.

Choosing a function to use can depend on the programming environment, some languages use strings easily, so the name parameters might be convenient,
etc.

Remarks

All of the Easy functions provide device synchronization within LJM.

3 - Constants

31 Jul 2019

https://labjack.com/support/ljm/users-guide/error-codes
https://labjack.com/support/ljm/users-guide/function-reference/single-value-functions
https://labjack.com/support/ljm/users-guide/function-reference/multiple-value-functions
https://labjack.com/support/ljm/users-guide/function-reference/stream-functions
https://labjack.com/support/modbus/map
https://labjack.com/support/ljm/users-guide/function-reference/ljmewriteaddress
https://labjack.com/support/ljm/users-guide/function-reference/ljmereadaddress
https://labjack.com/support/ljm/users-guide/function-reference/ljmewriteaddresses
https://labjack.com/support/ljm/users-guide/function-reference/ljmereadaddresses
https://labjack.com/support/ljm/users-guide/function-reference/ljmewriteaddressarray
https://labjack.com/support/ljm/users-guide/function-reference/ljmereadaddressarray
https://labjack.com/support/ljm/users-guide/function-reference/ljmeaddresses
https://labjack.com/support/ljm/users-guide/function-reference/ljmewritename
https://labjack.com/support/ljm/users-guide/function-reference/ljmereadname
https://labjack.com/support/ljm/users-guide/function-reference/ljmewritenames
https://labjack.com/support/ljm/users-guide/function-reference/ljmereadnames
https://labjack.com/support/ljm/users-guide/function-reference/ljmewritenamearray
https://labjack.com/support/ljm/users-guide/function-reference/ljmereadnamearray
https://labjack.com/support/ljm/users-guide/function-reference/ljmenames

A note on language wrapper differences

The constants are accessed in different ways, depending on which LJM language wrapper is being used.

C/C++: LJM constants begin with the prefix LJM_ . For example, use LJM_READ .

LabVIEW: LJM constants begin with the prefix LJM_ . For example, use LJM_READ .

Python: LJM constants are located in the namespace labjack.ljm.constants and do not begin with the LJM_ prefix. For example:

import labjack
print(labjack.ljm.constants.READ) # Prints 0

Or, for a shorter version:

from labjack.ljm import constants as ljmc
print(ljmc.READ) # Prints 0

.NET: LJM constants are located in the namespace LabJack.LJM.CONSTANTS and do not begin with the LJM_prefix. For example:

// C#
import LabJack;
// ...
Console.WriteLine(LJM.CONSTANTS.READ); // Prints 0

' Visual Basic
Imports LabJack
' ...
Console.WriteLine(LJM.CONSTANTS.READ) ' Prints 0

Delphi: LJM constants begin with the prefix LJM_ . For example, use LJM_READ .

Java: LJM constants are located in the namespace com.labjack.LJM.Constants and do not begin with the LJM_prefix. For example:

import com.labjack.LJM;
// ...
System.out.println(LJM.Constants.READ); // Prints 0

Node.js: LJM constants are located in ljswitchboard-ljm_driver_constants/lib/driver_constants.js and generally begin with the prefix LJM_ . For example,

var ljmc = require('ljswitchboard-ljm_driver_constants');
console.log(ljmc.LJM_READ)

Visual Basic 6 and VBA: LJM constants begin with the prefix LJM_ . For example, use LJM_READ .

LJM Constants

Used to specify if reading or writing:

READ = 0
WRITE = 1

Used to specify data type for parameters:

UINT16 = 0
UINT32 = 1
INT32 = 2
FLOAT32 = 3

BYTE = 99
STRING = 98

The STRING data type has the following max size, not including the automatic null-terminator:

STRING_MAX_SIZE = 49

May be used to initialize the ErrorAddress parameter of the multiple value functions:

INVALID_NAME_ADDRESS = -1

The maximum size of the ErrorString of LJM_ErrorToString:

MAX_NAME_SIZE = 256

As an entry of the aData parameter of LJM_eStreamRead, indicates a value was skipped due to auto-recovery:

DUMMY_VALUE = -9999

Device types used to specify which LabJack device to open:

dtANY = 0
dtUE9 = 9
dtU3 = 3
dtU6 = 6
dtT4 = 4
dtT7 = 7

31 Jul 2019

https://labjack.com/support/software/examples/ljm
https://github.com/chrisJohn404/ljswitchboard-ljm_driver_constants/blob/master/lib/driver_constants.js
https://labjack.com/support/ljm/users-guide/function-reference/multiple-value-functions
https://labjack.com/support/ljm/users-guide/function-reference/utility/ljmerrortostring
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamread

dtTSERIES = 84
dtSKYMOTE_BRIDGE = 1000
dtDIGIT = 200

Common connection types used to specify connect to be used when opening a device:

ctANY = 0
ctUSB = 1
ctTCP = 2 // Ethernet or WiFi
ctETHERNET = 3 // TCP
ctWIFI = 4 // TCP

Uncommon connection types:

ctNETWORK_UDP = 5
ctETHERNET_UDP = 6
ctWIFI_UDP = 7
ctNETWORK_ANY = 8 // TCP or UDP
ctETHERNET_ANY = 9 // TCP or UDP
ctWIFI_ANY = 10 // TCP or UDP

Constants related to opening devices:

NO_IP_ADDRESS = 0
NO_PORT = 0
TCP_PORT = 502
ETHERNET_UDP_PORT = 52362
WIFI_UDP_PORT = 502
UNKNOWN_IP_ADDRESS = -1
DEMO_MODE = "-2"
idANY = 0

The size of the arrays of LJM_ListAll:

LIST_ALL_SIZE = 128

Maximum packet sizes:

Max USB packet bytes = 64
Max TCP packet bytes = 1400

Timeout constants:

NO_TIMEOUT = 0
DEFAULT_USB_SEND_RECEIVE_TIMEOUT_MS = 2600
DEFAULT_ETHERNET_OPEN_TIMEOUT_MS = 1000
DEFAULT_ETHERNET_SEND_RECEIVE_TIMEOUT_MS = 2600
DEFAULT_WIFI_OPEN_TIMEOUT_MS = 1000
DEFAULT_WIFI_SEND_RECEIVE_TIMEOUT_MS = 4000

LJM Configuration Constants

The LJM configuration constants configure LJM behavior. For more information, see the Library Configuration Functions.

SEND_RECEIVE_TIMEOUT_MS = "LJM_SEND_RECEIVE_TIMEOUT_MS"

OPEN_TCP_DEVICE_TIMEOUT_MS = "LJM_OPEN_TCP_DEVICE_TIMEOUT_MS"

DEBUG_LOG_MODE = "LJM_DEBUG_LOG_MODE"
 LJM_DEBUG_LOG_MODE_NEVER = 1.0
 LJM_DEBUG_LOG_MODE_CONTINUOUS = 2.0
 LJM_DEBUG_LOG_MODE_ON_ERROR = 3.0

DEBUG_LOG_LEVEL = "LJM_DEBUG_LOG_LEVEL"
 LJM_STREAM_PACKET = 1.0
 LJM_TRACE = 2.0
 LJM_DEBUG = 4.0
 LJM_INFO = 6.0
 LJM_PACKET = 7.0
 LJM_WARNING = 8.0
 LJM_USER = 9.0
 LJM_ERROR = 10.0
 LJM_FATAL = 12.0

DEBUG_LOG_BUFFER_MAX_SIZE = "LJM_DEBUG_LOG_BUFFER_MAX_SIZE"

DEBUG_LOG_SLEEP_TIME_MS = "LJM_DEBUG_LOG_SLEEP_TIME_MS"

LIBRARY_VERSION = "LJM_LIBRARY_VERSION"

ALLOWS_AUTO_MULTIPLE_FEEDBACKS = "LJM_ALLOWS_AUTO_MULTIPLE_FEEDBACKS"

ALLOWS_AUTO_CONDENSE_ADDRESSES = "LJM_ALLOWS_AUTO_CONDENSE_ADDRESSES"

LJM_AUTO_IPS = "LJM_AUTO_IPS"

31 Jul 2019

https://labjack.com/support/software/api/ljm/demo-mode
https://labjack.com/support/ljm/users-guide/function-reference/ljmlistall
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/ljm/users-guide/constants/ljmsendreceivetimeoutms
https://labjack.com/support/ljm/users-guide/constants/ljmopentcpdevicetimeoutms
https://labjack.com/support/ljm/users-guide/constants/ljmdebuglogmode
https://labjack.com/support/ljm/users-guide/constants/ljmdebugloglevel
https://labjack.com/support/ljm/users-guide/constants/ljmlibraryversion
https://labjack.com/support/ljm/users-guide/constants/ljmallowsautomultiplefeedbacks
https://labjack.com/support/ljm/users-guide/constants/ljmallowsautocondenseaddresses
https://labjack.com/support/software/api/ljm/constants/ljmautoips

LJM_AUTO_IPS_FILE = "LJM_AUTO_IPS_FILE"

AUTO_RECONNECT_STICKY_CONNECTION = "LJM_AUTO_RECONNECT_STICKY_CONNECTION"

AUTO_RECONNECT_STICKY_SERIAL = "LJM_AUTO_RECONNECT_STICKY_SERIAL"

AUTO_RECONNECT_WAIT_MS = "LJM_AUTO_RECONNECT_WAIT_MS"

MODBUS_MAP_CONSTANTS_FILE = "LJM_MODBUS_MAP_CONSTANTS_FILE"

ERROR_CONSTANTS_FILE = "LJM_ERROR_CONSTANTS_FILE"

DEBUG_LOG_FILE = "LJM_DEBUG_LOG_FILE"

CONSTANTS_FILE = "LJM_CONSTANTS_FILE"

DEBUG_LOG_FILE_MAX_SIZE = "LJM_DEBUG_LOG_FILE_MAX_SIZE"

SPECIFIC_IPS_FILE = "LJM_SPECIFIC_IPS_FILE"

STREAM_AIN_BINARY = "LJM_STREAM_AIN_BINARY"

STREAM_RECEIVE_TIMEOUT_MODE = "LJM_STREAM_RECEIVE_TIMEOUT_MODE"

STREAM_RECEIVE_TIMEOUT_MS = "LJM_STREAM_RECEIVE_TIMEOUT_MS"

STREAM_SCANS_RETURN = "LJM_STREAM_SCANS_RETURN"

STREAM_TRANSFERS_PER_SECOND = "LJM_STREAM_TRANSFERS_PER_SECOND"

RETRY_ON_TRANSACTION_ID_MISMATCH = "LJM_RETRY_ON_TRANSACTION_ID_MISMATCH"

OLD_FIRMWARE_CHECK = "LJM_OLD_FIRMWARE_CHECK"

LJM_USE_TCP_INIT_FOR_T7_WIFI_TCP = "LJM_USE_TCP_INIT_FOR_T7_WIFI_TCP"

LJM_ZERO_LENGTH_ARRAY_MODE = "LJM_ZERO_LENGTH_ARRAY_MODE"

3.1 - Timeout Configs
Timeout Configs Overview

LJM can be configured to set separate timeouts when connecting to a device and when sending / receiving packets to / from a device. Both of these timeout
types can be configured separately for USB, Ethernet, and WiFi.

The open timeouts are:

LJM_ETHERNET_OPEN_TIMEOUT_MS
LJM_WIFI_OPEN_TIMEOUT_MS

LJM_OPEN_TCP_DEVICE_TIMEOUT_MS may be used to set both open timeout configs at the same time.
The send / receive (command-response) timeouts are:

LJM_USB_SEND_RECEIVE_TIMEOUT_MS
LJM_ETHERNET_SEND_RECEIVE_TIMEOUT_MS
LJM_WIFI_SEND_RECEIVE_TIMEOUT_MS

LJM_SEND_RECEIVE_TIMEOUT_MS may be used to set all three send / receive timeouts at the same time.

All timeouts are in units of milliseconds.

Details

One command-response operation (as performed by a function like LJM_eReadName, for example) may take longer than the timeout for that connection type.
This is because there are multiple timeout periods -- one to send the command and another to receive the response.

Setting a new timeout value will not affect pending timeouts.

Setting a timeout value to 0 sets an infinite timeout.

Relevant Functions

To read a timeout config, use LJM_ReadLibraryConfigS.

To write a timeout config, use LJM_WriteLibraryConfigS or LJM_LoadConfigurationFile.

Example

[C/C++] Read LJM_ETHERNET_SEND_RECEIVE_TIMEOUT_MS, set LJM_ETHERNET_SEND_RECEIVE_TIMEOUT_MS, then read it again

31 Jul 2019

https://labjack.com/support/software/api/ljm/constants/ljmautoipsfile
https://labjack.com/support/ljm/users-guide/constants/ljmautoreconnectstickyconnection
https://labjack.com/support/ljm/users-guide/constants/ljmautoreconnectstickyserial
https://labjack.com/support/software/api/ljm/constants/ljmautoreconnectwaitms
https://labjack.com/support/ljm/users-guide/constants/ljmmodbusmapconstantsfile
https://labjack.com/support/ljm/users-guide/constants/ljmerrorconstantsfile
https://labjack.com/support/ljm/users-guide/constants/ljmdebuglogfile
https://labjack.com/support/ljm/users-guide/constants/ljmconstantsfile
https://labjack.com/support/software/api/ljm/constants/ljmspecialaddressesfile
https://labjack.com/support/software/api/ljm/constants/ljmstreamainbinary
https://labjack.com/support/software/api/ljm/constants/ljmstreamreceivetimeoutmode
https://labjack.com/support/software/api/ljm/constants/ljmstreamreceivetimeoutms
https://labjack.com/support/ljm/users-guide/constants/ljmstreamscansreturn
https://labjack.com/support/ljm/users-guide/constants/ljmstreamtransferspersecond
https://labjack.com/support/ljm/users-guide/constants/ljmoldfirmwarecheck
https://labjack.com/support/software/api/ljm/constants/ljmusetcpinitfort7wifitcp
https://labjack.com/support/ljm/users-guide/constants/ljmethernetopentimeoutms
https://labjack.com/support/ljm/users-guide/constants/ljmwifiopentimeoutms
https://labjack.com/support/ljm/users-guide/constants/ljmopentcpdevicetimeoutms
https://labjack.com/support/ljm/users-guide/constants/ljmusbsendreceivetimeoutms
https://labjack.com/support/ljm/users-guide/constants/ljmethernetsendreceivetimeoutms
https://labjack.com/support/ljm/users-guide/constants/ljmwifisendreceivetimeoutms
https://labjack.com/support/ljm/users-guide/constants/ljmsendreceivetimeoutms
https://labjack.com/support/ljm/users-guide/function-reference/ljmereadname
https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile

char ErrorString[LJM_MAX_NAME_SIZE];
double Value = 0;
int LJMError = LJM_ReadLibraryConfigS(LJM_ETHERNET_SEND_RECEIVE_TIMEOUT_MS, &Value);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_ReadLibraryConfigS error: %s\n", ErrorString);
}
printf("The default for LJM_ETHERNET_SEND_RECEIVE_TIMEOUT_MS is %.00f milliseconds\n", Value);

Value = 3000;
printf("Setting LJM_ETHERNET_SEND_RECEIVE_TIMEOUT_MS to %.00f milliseconds\n", Value);
LJMError = LJM_WriteLibraryConfigS(LJM_ETHERNET_SEND_RECEIVE_TIMEOUT_MS, Value);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_WriteLibraryConfigS error: %s\n", ErrorString);
}

LJMError = LJM_ReadLibraryConfigS(LJM_ETHERNET_SEND_RECEIVE_TIMEOUT_MS, &Value);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_ReadLibraryConfigS error: %s\n", ErrorString);
}
printf("LJM_ETHERNET_SEND_RECEIVE_TIMEOUT_MS is now %.00f milliseconds\n", Value);

Possible output:

The default for LJM_ETHERNET_SEND_RECEIVE_TIMEOUT_MS is 2000 milliseconds
Setting LJM_ETHERNET_SEND_RECEIVE_TIMEOUT_MS to 3000 milliseconds
LJM_ETHERNET_SEND_RECEIVE_TIMEOUT_MS is now 3000 milliseconds

For more LJM configurations, see Library Configuration Functions.

LJM_ETHERNET_OPEN_TIMEOUT_MS
Summary

LJM_ETHERNET_OPEN_TIMEOUT_MS is a numerical readable-writable LJM library configuration which sets how long in milliseconds LJM waits for a
Ethernet-based TCP connection to be established.

The constant LJM_ETHERNET_OPEN_TIMEOUT_MS can be used interchangeably with the string "LJM_ETHERNET_OPEN_TIMEOUT_MS".

Details

See Timeout Configs.

If the pending connection may be Ethernet or WiFi, LJM_WIFI_OPEN_TIMEOUT_MS is used.

For more LJM configurations, see Library Configuration Functions.

LJM_ETHERNET_SEND_RECEIVE_TIMEOUT_MS
Summary

LJM_ETHERNET_SEND_RECEIVE_TIMEOUT_MS is a numerical readable-writable LJM library configuration which sets how long LJM waits for a Ethernet-
connected TCP packet to be sent or received in milliseconds.

The constant LJM_ETHERNET_SEND_RECEIVE_TIMEOUT_MS can be used interchangeably with the string
"LJM_ETHERNET_SEND_RECEIVE_TIMEOUT_MS".

Default

The default is 2600 milliseconds.

Details

See Timeout Configs.

For more LJM configurations, see Library Configuration Functions.

LJM_USB_SEND_RECEIVE_TIMEOUT_MS
Summary

LJM_USB_SEND_RECEIVE_TIMEOUT_MS is a numerical readable-writable LJM library configuration which sets how long LJM waits for a USB packet to be
sent or received in milliseconds.

The constant LJM_USB_SEND_RECEIVE_TIMEOUT_MS can be used interchangeably with the string "LJM_USB_SEND_RECEIVE_TIMEOUT_MS".

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/ljm/users-guide/constants/timeout-configs
https://labjack.com/support/ljm/users-guide/constants/ljmwifiopentimeoutms
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/ljm/users-guide/constants/timeout-configs
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions

Default

The default is 2600 milliseconds.

Details

See Timeout Configs.

For more LJM configurations, see Library Configuration Functions.

LJM_WIFI_OPEN_TIMEOUT_MS
Summary

LJM_WIFI_OPEN_TIMEOUT_MS is a numerical readable-writable LJM library configuration which sets how long in milliseconds LJM waits for a WiFi-based
TCP connection to be established.

The constant LJM_WIFI_OPEN_TIMEOUT_MS can be used interchangeably with the string "LJM_WIFI_OPEN_TIMEOUT_MS".

Details

See Timeout Configs.

If the pending connection may be Ethernet or WiFi, LJM_WIFI_OPEN_TIMEOUT_MS is used.

For more LJM configurations, see Library Configuration Functions.

LJM_WIFI_SEND_RECEIVE_TIMEOUT_MS
Summary

LJM_WIFI_SEND_RECEIVE_TIMEOUT_MS is a numerical readable-writable LJM library configuration which sets how long LJM waits for a WiFi-connected
TCP packet to be sent or received in milliseconds.

The constant LJM_WIFI_SEND_RECEIVE_TIMEOUT_MS can be used interchangeably with the string "LJM_WIFI_SEND_RECEIVE_TIMEOUT_MS".

Default

The default is 4000 milliseconds.

Details

See Timeout Configs.

For more LJM configurations, see Library Configuration Functions.

LJM_OPEN_TCP_DEVICE_TIMEOUT_MS
Summary

LJM_OPEN_TCP_DEVICE_TIMEOUT_MS is a numerical readable-writable LJM library configuration which is a shortcut for setting the following configs:

LJM_ETHERNET_OPEN_TIMEOUT_MS
LJM_WIFI_OPEN_TIMEOUT_MS

The constant LJM_OPEN_TCP_DEVICE_TIMEOUT_MS can be used interchangeably with the string "LJM_OPEN_TCP_DEVICE_TIMEOUT_MS".

Reading LJM_OPEN_TCP_DEVICE_TIMEOUT_MS may be meaningless if it has not previously been written.

Details

See Timeout Configs.

For more LJM configurations, see Library Configuration Functions.

LJM_SEND_RECEIVE_TIMEOUT_MS
Summary

LJM_SEND_RECEIVE_TIMEOUT_MS is a numerical readable-writable LJM library configuration which is a shortcut for setting the following configs:

LJM_USB_SEND_RECEIVE_TIMEOUT_MS

31 Jul 2019

https://labjack.com/support/ljm/users-guide/constants/timeout-configs
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/ljm/users-guide/constants/timeout-configs
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/ljm/users-guide/constants/timeout-configs
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/ljm/users-guide/constants/timeout-configs
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions

LJM_ETHERNET_SEND_RECEIVE_TIMEOUT_MS
LJM_WIFI_SEND_RECEIVE_TIMEOUT_MS

The constant LJM_SEND_RECEIVE_TIMEOUT_MS can be used interchangeably with the string "LJM_SEND_RECEIVE_TIMEOUT_MS".

Reading LJM_SEND_RECEIVE_TIMEOUT_MS may be meaningless if it has not previously been written.

Details

See Timeout Configs.

For more LJM configurations, see Library Configuration Functions.

3.2 - LJM Specific IPs
A Note About Auto IPs

LJM 1.1500 adds the Auto IPs feature, which provides most of the benefit of specific IPs, but does so automatically. Most users should not need to edit the
ljm_specific_ips.config file.

LJM Specific IPs

If LJM isn't finding an Ethernet or WiFi device during a search open (i.e. a non-specific open where "ANY" is passed for some parameters), use
ljm_specific_ips.config to configure LJM to specially check specific IP addresses. LJM tries to open each IP address in ljm_specific_ips.config during relevant Open
calls and ListAll calls.

Example ljm_specific_ips.config

Regardless of your computer's IP address, the following ljm_specific_ips.config file would trigger 192.168.2.207 and 10.0.0.123 to be checked:

// Have LJM connect to the static-IP T7...
// ...in the lab:
192.168.2.207

// ...in the kitchen:
10.0.0.123

Syntax

File syntax:

Whitespace is ignored.
Empty lines and lines starting with // are ignored.
All other lines are expected to contain one IP address, which should not be a broadcast address.

Default Location

Windows Vista and later:
C:\ProgramData\LabJack\LJM\ljm_specific_ips.config

Windows XP:
C:\Documents and Settings\All Users\Application Data\LabJack\LJM\ljm_specific_ips.config

Mac OS X and Linux:
/usr/local/share/LabJack/LJM/ljm_specific_ips.config

ljm_specific_ips.config is not overwritten by the installer.

Remarks

For programmatically setting the file path, see LJM_SPECIFIC_IPS_FILE.

For checking if LJM has successfully read the specific IPs file, use LJM_GetSpecificIPsInfo.

Specific IPs are treated with higher priority than normal IP addresses. They checked before or during the regular UPD broadcast search and are more likely to
be an Open result.

Contact your network administrator to ensure that each of the desired IPs will be reachable via TCP/UDP as a static IP address. You can also ping each
address to ensure that they are reachable.

LJM_SPECIAL_ADDRESSES_STATUS
LJM_SPECIAL_ADDRESSES_STATUS is deprecated. Please use LJM_GetSpecificIPsInfo instead.

Summary

31 Jul 2019

https://labjack.com/support/ljm/users-guide/constants/timeout-configs
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/software/api/ljm/function-reference/AutoIPsConfigs
https://labjack.com/support/software/api/ljm/function-reference/opening-and-closing
https://labjack.com/support/software/api/ljm/function-reference/ljmlistall
https://labjack.com/support/software/api/ljm/constants/ljmspecialaddressesfile
https://labjack.com/support/software/api/ljm/function-reference/LJMGetSpecificIPsInfo
https://labjack.com/support/software/api/ljm/function-reference/LJMGetSpecificIPsInfo

Passing LJM_SPECIAL_ADDRESSES_STATUS to LJM_ReadLibraryConfigStringS returns a string that reports the current success or failure of parsing
LJM_SPECIAL_ADDRESSES_FILE.

LJM_SPECIAL_ADDRESSES_STATUS is read-only.

The constant LJM_SPECIAL_ADDRESSES_STATUS can be used interchangeably with the string "LJM_SPECIAL_ADDRESSES_STATUS".

Possible Values

Below are some example values that may be reported as LJM_SPECIAL_ADDRESSES_STATUS. This feature is in development, so if you need to
programmatically parse LJM_SPECIAL_ADDRESSES_STATUS, please contact us.

Success. File: file_path, IPs: [comma-separated_list_of_IP_addresses]

File load failure: file_path

Remarks

See the Special Addresses Configs overview.

For more LJM configurations, see Library Configuration Functions.

LJM_SPECIFIC_IPS_FILE
Summary

LJM_SPECIFIC_IPS_FILE is an LJM configuration that describes the absolute or relative file path of the LJM specific IPs file.

To read, pass LJM_SPECIFIC_IPS_FILE to LJM_ReadLibraryConfigStringS to get a string containing the file path.

To write, pass LJM_SPECIFIC_IPS_FILE and string containing a file path to LJM_WriteLibraryConfigStringS, or use LJM_LoadConfigurationFile.

The constant LJM_SPECIFIC_IPS_FILE can be used interchangeably with the string "LJM_SPECIFIC_IPS_FILE".

Remarks

To set LJM_SPECIFIC_IPS_FILE to the default location, set it to "default" or an empty string. For example, in C/C++:

int error = LJM_WriteLibraryConfigStringS(LJM_SPECIFIC_IPS_FILE, "default");

The default file path specified by LJM_SPECIFIC_IPS_FILE is only parsed on LJM startup, so changes made to the file will not affect running LJM processes
unless LJM_WriteLibraryConfigStringS(LJM_SPECIFIC_IPS_FILE, ...) is called.

LJM_SPECIFIC_IPS_FILE replaces the deprecated LJM_SPECIAL_ADDRESSES_FILE.

For more LJM configurations, see Library Configuration Functions.

3.3 - LJM Startup Configs
LJM Startup Configs

If you need to change LJM's configs either globally or quickly, you can edit the ljm_startup_configs.json file.

Default Location

Windows Vista and later:
C:\ProgramData\LabJack\LJM\ljm_startup_configs.json

Windows XP:
C:\Documents and Settings\All Users\Application Data\LabJack\LJM\ljm_startup_configs.json

Mac OS X and Linux:
/usr/local/share/LabJack/LJM/ljm_startup_configs.json

Parsing

Parsed before any other configs are set, so config values that are manually set using the programmatic config functions (such as
LJM_WriteLibraryConfigS) with take precedence over the values in ljm_startup_configs.json.
Parsed during LJM startup, so processes that have already loaded LJM will not be altered by new changes to ljm_startup_configs.json.
ljm_startup_configs.json (and the containing folder) may be overwritten when LJM updates, so if you'd like to make changes to the configurations that are
loaded when LJM starts, use ljm_startup_configs.json as a template to make a different file in a different directory that you control, then load that file
using the LJM_LoadConfigurationFile function at the beginning of your program.

Default Values

Use the string "default" to load the default value for each config parameter. Otherwise, see the "type" for each config parameter for what kinds of values can be
accepted. Please see LabJackM.h for more information about what each config parameter does.

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigStringS
https://labjack.com/support/software/api/ljm/constants/ljmspecialaddressesfile
https://labjack.com/contact
https://labjack.com/support/software/api/ljm/constants/SpecialAddressesConfigs
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/software/api/ljm/constants/SpecialAddressesConfigs
https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigStringS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigStringS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/software/api/ljm/function-reference/library-configuration-functions
https://labjack.com/support/software/api/ljm/function-reference/library-configuration-functions
https://labjack.com/support/software/api/ljm/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/software/api/ljm/function-reference/LJMLoadConfigurationFile

Configs that are not included in ljm_startup_configs.json will be given the default value.

Syntax

ljm_startup_configs.json is parsed by LJM case-insensitively. LJM ignores every key in the top-level JSON object except for LJM_CONFIG_VALUES, as well
as ignoring every "description", "type", and "values" fields. Other fields in LJM_CONFIG_VALUES which are not recognized by LJM will generate
errors/warnings. LJM will also ignore lines starting with "//".

Windows Paths

Windows file paths must escape \ characters with \. For example, the path:

 C:\ljm.log

Must be escaped as:

 C:\\ljm.log

3.4 - LJM Auto IPs
LJM Auto IPs Overview

LJM automatically stores network connection information to file to help open connections to LabJack devices during relevant Open calls and ListAll calls.

Auto IPs functionality was added in LJM 1.1500.

Remarks

For enabling or disabling LJM Auto IPs functionality, see LJM_AUTO_IPS.

For setting the file path, see LJM_AUTO_IP_FILE.

Auto IPs are added when a LabJack device responds to a normal LJM UDP discovery broadcast. If the device is successfully queried for its attributes, those
attributes are added to the given auto IP entry. Auto IPs in the auto IPs file are made unique according to serial number combined with connection type. Auto
IPs are also removed from the auto IPs file when they have not resulted in a successful open during 10 days. Auto IPs that have not recently had a successful
open have a shorter open timeout.

A Note About Specific IPs

LJM has a similar feature called Specific IPs with the main differences being:

Specific IPs must be manually added/removed from the Specific IPs file.
Specific IPs have higher priority over other IP-based opens—they are more likely to be the result of an Open call.
Specific IPs always have a full-length open timeout.

LJM_AUTO_IPS
Summary

LJM_AUTO_IPS sets whether or not LJM uses the auto IPs feature.

The constant LJM_AUTO_IPS can be used interchangeably with the string "LJM_AUTO_IPS".

Details

0 - false/disabled

1 - true/enabled (Default)

Relevant Functions

To read LJM_AUTO_IPS, use LJM_ReadLibraryConfigS.

To write LJM_AUTO_IPS, use LJM_WriteLibraryConfigS or LJM_LoadConfigurationFile.

For more LJM configurations, see Library Configuration Functions.

LJM_AUTO_IPS_FILE
Summary

LJM_AUTO_IPS_FILE is an LJM configuration that describes the absolute or relative file path of the LJM auto IPs file.

31 Jul 2019

https://labjack.com/support/software/api/ljm/function-reference/opening-and-closing
https://labjack.com/support/software/api/ljm/function-reference/ljmlistall
https://labjack.com/support/software/api/ljm/constants/ljmautoips
https://labjack.com/support/software/api/ljm/constants/ljmautoipsfile
https://labjack.com/support/software/api/ljm/constants/SpecificIPsConfigs
https://labjack.com/support/software/api/ljm/constants/ljmspecialaddressesfile
https://labjack.com/support/software/api/ljm/function-reference/AutoIPsConfigs
https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/software/api/ljm/function-reference/AutoIPsConfigs

To read, pass LJM_AUTO_IPS_FILE to LJM_ReadLibraryConfigStringS to get a string containing the file path.

To write, pass LJM_AUTO_IPS_FILE and string containing a file path to LJM_WriteLibraryConfigStringS, or use LJM_LoadConfigurationFile.

The constant LJM_AUTO_IPS_FILE can be used interchangeably with the string "LJM_AUTO_IPS_FILE".

Default Location

Windows Vista and later:
C:\ProgramData\LabJack\LJM\ljm_auto_ips.json

Windows XP:
C:\Documents and Settings\All Users\Application Data\LabJack\LJM\ljm_auto_ips.json

Mac OS X and Linux:
/usr/local/share/LabJack/LJM/ljm_auto_ips.json

Remarks

To set LJM_AUTO_IPS_FILE to the default location, set it to "default" or an empty string. For example, in C/C++:

int error = LJM_WriteLibraryConfigStringS(LJM_AUTO_IPS_FILE, "default");

LJM will attempt to create the file specified by LJM_AUTO_IPS_FILE if it does not exist.

For more LJM configurations, see Library Configuration Functions.

3.5 - LJM Deep Search
LJM Deep Search

LJM Deep Search is a LJM feature that searches IP address ranges for LabJack devices. It is meant to be used to find DHCP-enabled devices on networks
where UDP broadcasts do not propagate to the device, such as when the device is on a separate subnet. Most users should not need to use LJM Deep
Search, since the normal UDP broadcast discovery usually works.

Deep Search adds time to device searching. Though Deep Search can find devices with static IPs, Specific IPs is more suitable for that purpose because
Specific IPs is quicker.

Deep Search is enabled by writing IP address range(s) to the LJM_DEEP_SEARCH_FILE.

When LJM_DEEP_SEARCH_FILE contains IP addresses ranges(s), Deep Search is triggered after the normal UDP broadcast discovery during for either of
the following situations:

1. ListAll or ListAllExtended is called
2. Open or OpenS is called with all of the following conditions:

A. The open call is passed a network-based ConnectionType—essentially any ConnectionType except USB
B. The open call is passed a Identifier that is a device name or serial number
C. A device with the specified name or serial number cannot be found after UDP broadcast discovery, Auto IPs, and Specific IPs searching

Deep Search stores results as Auto IPs, to speed up future open calls.

Example ljm_deep_search.config

Regardless of you computer's IP address, the following ljm_deep_search.config file would trigger search of 155 IP addresses, including 192.168.2.100 and
192.168.2.254:

192.168.2.100-254

Syntax

File syntax:

Whitespace is ignored.
Empty lines and lines starting with // are ignored.
All other lines are expected to contain one IP address range, which should not include a broadcast address. The IP address range must be an
IPv4 address with the last octet being two numbers separated by a dash. For example: 192.168.2.100-254

Default Location

Windows Vista and later:
C:\ProgramData\LabJack\LJM\ljm_deep_search.config

Windows XP:
C:\Documents and Settings\All Users\Application Data\LabJack\LJM\ljm_deep_search.config

Mac OS X and Linux:
/usr/local/share/LabJack/LJM/ljm_deep_search.config

ljm_deep_search.config is not overwritten by the installer.

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigStringS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigStringS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/software/api/ljm/constants/SpecificIPsConfigs
https://labjack.com/support/software/api/ljm/function-reference/AutoIPsConfigs
https://labjack.com/support/software/api/ljm/constants/SpecificIPsConfigs
https://labjack.com/support/software/api/ljm/function-reference/AutoIPsConfigs

Remarks

For programmatically setting the file path, see LJM_DEEP_SEARCH_FILE.

For checking if LJM has successfully read the Deep Search file, use LJM_GetDeepSearchInfo.

macOS Issue

macOS has a file limit, per Terminal shell. The default is low: 256. Deep Search opens many sockets in parallel, so opening any files (sockets) after 256 will
fail. This can cause Deep Search to become rather useless unless the file limit is increased.

To increase the file limit to 2048 (which is typically sufficient for Deep Search), execute the following command in your shell:

ulimit -S -n 2048

This change only lasts for the current shell session. To make it permanent, you can add it to your shell's startup configurations. (E.g. .bashrc, .bash_profile,
etc.)

LJM_DEEP_SEARCH_FILE
Summary

LJM_DEEP_SEARCH_FILE is an LJM configuration that describes the absolute or relative file path of the LJM Deep Search file.

To read, pass LJM_DEEP_SEARCH_FILE to LJM_ReadLibraryConfigStringS to get a string containing the file path.

To write, pass LJM_DEEP_SEARCH_FILE and string containing a file path to LJM_WriteLibraryConfigStringS, or use LJM_LoadConfigurationFile.

The constant LJM_DEEP_SEARCH_FILE can be used interchangeably with the string "LJM_DEEP_SEARCH_FILE".

Remarks

To set LJM_DEEP_SEARCH_FILE to the default location, set it to "default" or an empty string. For example, in C/C++:

int error = LJM_WriteLibraryConfigStringS(LJM_DEEP_SEARCH_FILE, "default");

The default file path specified by LJM_DEEP_SEARCH_FILE is only parsed on LJM startup, so changes made to the file will not affect running LJM processes
unless LJM_WriteLibraryConfigStringS(LJM_DEEP_SEARCH_FILE, ...) is called.

For more LJM configurations, see Library Configuration Functions.

3.6 - Device Search Configs
When LJM searches for devices in the following situations:

During an open or ListAll call
During reconnect

The below parameters configure device search behavior.

Retries:

LJM_LISTALL_NUM_ATTEMPTS_ETHERNET
Determines the number of times LJM tries to discover Ethernet connections per open/ListAll call.
Default: 2

LJM_LISTALL_NUM_ATTEMPTS_WIFI
Determines the number of times LJM tries to discover WiFi connections per open/ListAll call.
Default: 2

Concurrent searching:

LJM_LISTALL_THREADED_ETHERNET
Determines whether LJM searches for Ethernet connections in parallel with the other connection type searches or not
Default: true

LJM_LISTALL_THREADED_USB
Determines whether LJM searches for USB connections in parallel with the other connection type searches or not
Default: true

LJM_LISTALL_THREADED_WIFI
Determines whether LJM searches for WiFi connections in parallel with the other connection type searches or not
Default: true

31 Jul 2019

https://labjack.com/support/software/api/ljm/constants/ljmdeepsearchfile
https://labjack.com/support/software/api/ljm/function-reference/LJMGetDeepSearchInfo
https://labjack.com/support/software/api/ljm/constants/DeepSearchConfigs
https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigStringS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigStringS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions

Timeout:

Determines how long in milliseconds LJM waits for device responses:

LJM_LISTALL_TIMEOUT_MS_ETHERNET
Default: 900

LJM_LISTALL_TIMEOUT_MS_WIFI
Default: 1000

Protocol:

Determines whether LJM initializes the connection via UDP (true) or TCP (false):

LJM_LISTALL_UDP_ETHERNET
Default: true

LJM_LISTALL_UDP_WIFI
Default: true

Relevant Functions

To read the above configs, use LJM_ReadLibraryConfigS.

To write the above configs, use LJM_WriteLibraryConfigS or LJM_LoadConfigurationFile.

Remarks

Other related device connection configurations:

Auto IPs - Automatically stored connection information for helping to open connections.
Specific IPs - Manual configurations for connecting to statically-addressed LabJack devices.
Deep Search - Manual configurations for connecting to DHCP-addressed LabJack devices.

3.7 - RPC Configs
LJM uses gRPC to coordinate device connections. This allows LJM to retrieve information about USB-connected LabJack devices.

The below parameters configure LJM RPC behavior.

LJM_RPC_HEARTBEAT_PORT
Determines the port that LJM uses to coordinate device connections.
Default: 50051
Windows: cmd command to check if port 50051 is in use: netstat -na | find "50051"

LJM_RPC_ENABLE
Enables (when true) or disables (when false) RPC communications from a given instance of LJM.
Default: true

LJM_RPC_TIMEOUT_MS
Determines the multi-purpose RPC timeout in milliseconds
Default: 1000

LJM_ALLOWS_AUTO_CONDENSE_ADDRESSES
Summary

LJM_ALLOWS_AUTO_CONDENSE_ADDRESSES is a numerical readable-writable LJM library configuration that determines whether or not LJM will
automatically condense congruent address reads/writes into array reads/writes.

For example, if a call to LJM_eNames contains two frames next to each other that write to AIN0 then AIN1, LJM would automatically condense these frames
into one frame that writes to both AIN0 and AIN1.

The constant LJM_ALLOWS_AUTO_CONDENSE_ADDRESSES can be used interchangeably with the string
"LJM_ALLOWS_AUTO_CONDENSE_ADDRESSES".

Details

0 - false/disabled

1 - true/enabled (Default)

Relevant Functions

To read LJM_ALLOWS_AUTO_CONDENSE_ADDRESSES, use LJM_ReadLibraryConfigS.

To write LJM_ALLOWS_AUTO_CONDENSE_ADDRESSES, use LJM_WriteLibraryConfigS or LJM_LoadConfigurationFile.

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile
https://labjack.com/support/software/api/ljm/function-reference/AutoIPsConfigs
https://labjack.com/support/software/api/ljm/constants/SpecificIPsConfigs
https://labjack.com/support/software/api/ljm/constants/DeepSearchConfigs
https://labjack.com/support/ljm/users-guide/function-reference/ljmenames
https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile

Example

[C/C++] Read LJM_ALLOWS_AUTO_CONDENSE_ADDRESSES, set LJM_ALLOWS_AUTO_CONDENSE_ADDRESSES, then read it again

char ErrorString[LJM_MAX_NAME_SIZE];
double Value;
int LJMError = LJM_ReadLibraryConfigS(LJM_ALLOWS_AUTO_CONDENSE_ADDRESSES, &Value);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_ReadLibraryConfigS error: %s\n", ErrorString);
}
if (Value == 0) {
 printf("LJM_ALLOWS_AUTO_CONDENSE_ADDRESSES is disabled by default.\n");
}
else {
 printf("LJM_ALLOWS_AUTO_CONDENSE_ADDRESSES is enabled by default.\n");
}

printf("Disabling LJM_ALLOWS_AUTO_CONDENSE_ADDRESSES\n");
LJMError = LJM_WriteLibraryConfigS(LJM_ALLOWS_AUTO_CONDENSE_ADDRESSES, 0);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_WriteLibraryConfigS error: %s\n", ErrorString);
}

LJMError = LJM_ReadLibraryConfigS(LJM_ALLOWS_AUTO_CONDENSE_ADDRESSES, &Value);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_ReadLibraryConfigS error: %s\n", ErrorString);
}
if ((int)Value == 0) {
 printf("LJM_ALLOWS_AUTO_CONDENSE_ADDRESSES is now disabled.\n");
}
else {
 printf("LJM_ALLOWS_AUTO_CONDENSE_ADDRESSES is now enabled.\n");
}

Possible output:

LJM_ALLOWS_AUTO_CONDENSE_ADDRESSES is enabled by default.
Disabling LJM_ALLOWS_AUTO_CONDENSE_ADDRESSES
LJM_ALLOWS_AUTO_CONDENSE_ADDRESSES is now disabled.

For more LJM configurations, see Library Configuration Functions.

LJM_ALLOWS_AUTO_MULTIPLE_FEEDBACKS
Summary

LJM_ALLOWS_AUTO_MULTIPLE_FEEDBACKS is a numerical readable-writable LJM library configuration that determines whether or not LJM will
automatically perform multiple Feedback commands when the desired operations would exceed the maximum packet length.

For example, if a call to LJM_eNames would require a 68-byte packet but the connection can only take 64-byte packets, LJM would automatically separate the
LJM_eNames call into 2 operations of less than 64 bytes each.

The constant LJM_ALLOWS_AUTO_MULTIPLE_FEEDBACKS can be used interchangeably with the string
"LJM_ALLOWS_AUTO_MULTIPLE_FEEDBACKS".

Details

0 - false/disabled

1 - true/enabled (Default)

Relevant Functions

To read LJM_ALLOWS_AUTO_MULTIPLE_FEEDBACKS, use LJM_ReadLibraryConfigS.

To write LJM_ALLOWS_AUTO_MULTIPLE_FEEDBACKS, use LJM_WriteLibraryConfigS or LJM_LoadConfigurationFile.

Example

[C/C++] Read LJM_ALLOWS_AUTO_MULTIPLE_FEEDBACKS, set LJM_ALLOWS_AUTO_MULTIPLE_FEEDBACKS, then read it again

char ErrorString[LJM_MAX_NAME_SIZE];
double Value;
int LJMError = LJM_ReadLibraryConfigS(LJM_ALLOWS_AUTO_MULTIPLE_FEEDBACKS, &Value);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_ReadLibraryConfigS error: %s\n", ErrorString);

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/ljm/users-guide/function-reference/ljmenames
https://labjack.com/support/ljm/users-guide/function-reference/ljmenames
https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile

}
if ((int)Value == 0) {
 printf("LJM_ALLOWS_AUTO_MULTIPLE_FEEDBACKS is disabled by default.\n");
}
else {
 printf("LJM_ALLOWS_AUTO_MULTIPLE_FEEDBACKS is enabled by default.\n");
}

printf("Disabling LJM_ALLOWS_AUTO_MULTIPLE_FEEDBACKS\n");
LJMError = LJM_WriteLibraryConfigS(LJM_ALLOWS_AUTO_MULTIPLE_FEEDBACKS, 0);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_WriteLibraryConfigS error: %s\n", ErrorString);
}

LJMError = LJM_ReadLibraryConfigS(LJM_ALLOWS_AUTO_MULTIPLE_FEEDBACKS, &Value);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_ReadLibraryConfigS error: %s\n", ErrorString);
}
if ((int)Value == 0) {
 printf("LJM_ALLOWS_AUTO_MULTIPLE_FEEDBACKS is now disabled.\n");
}
else {
 printf("LJM_ALLOWS_AUTO_MULTIPLE_FEEDBACKS is now enabled.\n");
}

Possible output:

LJM_ALLOWS_AUTO_MULTIPLE_FEEDBACKS is enabled by default.
Disabling LJM_ALLOWS_AUTO_MULTIPLE_FEEDBACKS
LJM_ALLOWS_AUTO_MULTIPLE_FEEDBACKS is now disabled.

For more LJM configurations, see Library Configuration Functions.

LJM_AUTO_RECONNECT_STICKY_CONNECTION
Summary

LJM_AUTO_RECONNECT_STICKY_CONNECTION is a numerical readable-writable LJM library configuration that sets whether or not LJM attempts to
reconnect disrupted / disconnected connections according to same connection type as the original handle. When
LJM_AUTO_RECONNECT_STICKY_CONNECTION is disabled, the ConnectionType that was used during the initial LJM_Open or LJM_OpenS call will be
used to reconnect.

The constant LJM_AUTO_RECONNECT_STICKY_CONNECTION can be used interchangeably with the string
"LJM_AUTO_RECONNECT_STICKY_CONNECTION".

Details

0 - false/disabled - Reconnects according to the ConnectionType parameter that was passed to the Open call

1 - true/enabled (Default) - Reconnects via the actual connection type that was used to connect to the device

Relevant Functions

To read LJM_AUTO_RECONNECT_STICKY_CONNECTION, use LJM_ReadLibraryConfigS.

To write LJM_AUTO_RECONNECT_STICKY_CONNECTION, use LJM_WriteLibraryConfigS or LJM_LoadConfigurationFile.

See also: LJM_AUTO_RECONNECT_STICKY_SERIAL.

For more LJM configurations, see Library Configuration Functions.

LJM_AUTO_RECONNECT_STICKY_SERIAL
Summary

LJM_AUTO_RECONNECT_STICKY_SERIAL is a numerical readable-writable LJM library configuration that sets whether or not LJM attempts to reconnect
disrupted / disconnected connections according to same serial number as the original handle. When LJM_AUTO_RECONNECT_STICKY_SERIAL is disabled,
the Identifier that was used during the initial LJM_Open or LJM_OpenS call will be used to reconnect.

The constant LJM_AUTO_RECONNECT_STICKY_SERIAL can be used interchangeably with the string "LJM_AUTO_RECONNECT_STICKY_SERIAL".

Details

0 - false/disabled

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens
https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile
https://labjack.com/support/software/api/ljm/constants/ljmautoreconnectstickyserial
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmopens

1 - true/enabled (Default)

Relevant Functions

To read LJM_AUTO_RECONNECT_STICKY_SERIAL, use LJM_ReadLibraryConfigS.

To write LJM_AUTO_RECONNECT_STICKY_SERIAL, use LJM_WriteLibraryConfigS or LJM_LoadConfigurationFile.

See also: LJM_AUTO_RECONNECT_STICKY_CONNECTION.

For more LJM configurations, see Library Configuration Functions.

LJM_AUTO_RECONNECT_WAIT_MS
Summary

LJM_AUTO_RECONNECT_WAIT_MS is a numerical readable-writable LJM library configuration that sets how long in milliseconds LJM waits between
attempts to reconnect when a device has been found to be disconnected. The default is 500 milliseconds.

The constant LJM_AUTO_RECONNECT_WAIT_MS can be used interchangeably with the string "LJM_AUTO_RECONNECT_WAIT_MS".

Relevant Functions

To read LJM_AUTO_RECONNECT_WAIT_MS, use LJM_ReadLibraryConfigS.

To write LJM_AUTO_RECONNECT_WAIT_MS, use LJM_WriteLibraryConfigS or LJM_LoadConfigurationFile.

See also: How to deal with LJME_RECONNECT_FAILED.

For more LJM configurations, see Library Configuration Functions.

LJM_CONSTANTS_FILE
Summary

LJM_CONSTANTS_FILE is a string-based write-only LJM library configuration which sets the absolute or relative path of an existing file to read Modbus
constants and error constants from. It is a shortcut for writing to both LJM_MODBUS_MAP_CONSTANTS_FILE and LJM_ERROR_CONSTANTS_FILE.

The constant LJM_CONSTANTS_FILE can be used interchangeably with the string "LJM_CONSTANTS_FILE".

Default Value

Windows Vista and later
C:\ProgramData\LabJack\LJM\ljm_constants.json

Windows XP
C:\Documents and Settings\All Users\Application Data\LabJack\LJM\ljm_constants.json

Mac OS X and Linux
/usr/local/share/LabJack/LJM/ljm_constants.json

Relevant Constants

LJM_MODBUS_MAP_CONSTANTS_FILE and LJM_ERROR_CONSTANTS_FILE

Relevant Functions

To write LJM_CONSTANTS_FILE, use LJM_WriteLibraryConfigStringS or LJM_LoadConfigurationFile.

Setting LJM_CONSTANTS_FILE may affect the output of the following functions:

LJM_ErrorToString
LJM_NameToAddress
LJM_NamesToAddresses
LJM_AddressToType
LJM_AddressesToTypes

Example

[C/C++] Set LJM_CONSTANTS_FILE to "alternate_constants.json"

char ErrorString[LJM_MAX_NAME_SIZE];
int LJMError = LJM_WriteLibraryConfigStringS(LJM_CONSTANTS_FILE, "alternate_constants.json");
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_WriteLibraryConfigStringS error: %s\n", ErrorString);
}

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile
https://labjack.com/support/ljm/users-guide/constants/ljmautoreconnectstickyconnection
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile
https://labjack.com/support/software/api/ljm/ljmereconnectfailed
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/ljm/users-guide/constants/ljmmodbusmapconstantsfile
https://labjack.com/support/ljm/users-guide/constants/ljmerrorconstantsfile
https://labjack.com/support/ljm/users-guide/constants/ljmmodbusmapconstantsfile
https://labjack.com/support/ljm/users-guide/constants/ljmerrorconstantsfile
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigStringS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile
https://labjack.com/support/ljm/users-guide/function-reference/utility/ljmerrortostring
https://labjack.com/support/ljm/users-guide/function-reference/utility/ljmnametoaddress
https://labjack.com/support/ljm/users-guide/function-reference/utility/ljmnamestoaddresses
https://labjack.com/support/ljm/users-guide/function-reference/utility/ljmaddresstotype
https://labjack.com/support/ljm/users-guide/function-reference/utility/ljmaddressestotypes

For more LJM configurations, see Library Configuration Functions.

LJM_DEBUG_LOG_FILE
Default

Windows Vista and later
C:\ProgramData\LabJack\LJM\ljm.log

Windows XP
C:\Documents and Settings\All Users\Application Data\LabJack\LJM\ljm.log

Mac OS X and Linux
/usr/local/share/LabJack/LJM/ljm.log

Summary

LJM_DEBUG_LOG_FILE is a string-based readable-writable LJM library configuration which sets the absolute or relative path of the file to output log
messages to.

The constant LJM_DEBUG_LOG_FILE can be used interchangeably with the string "LJM_DEBUG_LOG_FILE".

Details

The configuration value of LJM_DEBUG_LOG_FILE is meaningless if LJM_DEBUG_LOG_MODE is in LJM_DEBUG_LOG_MODE_NEVER (which is the
default).

Relevant Constants

See these debug logger parameters, especially LJM_DEBUG_LOG_MODE.

Relevant Functions

To read LJM_DEBUG_LOG_FILE, use LJM_ReadLibraryConfigStringS.

To write LJM_DEBUG_LOG_FILE, use LJM_WriteLibraryConfigStringS or LJM_LoadConfigurationFile.

For more information, see 2.7 Debugging Functions.

Example

[C/C++] Set LJM to log to the log file "ljm_monday.log"

char ErrorString[LJM_MAX_NAME_SIZE];
char DebugLogFile[LJM_MAX_NAME_SIZE];
int LJMError;

printf("Setting LJM_DEBUG_LOG_MODE to LJM_DEBUG_LOG_MODE_CONTINUOUS\n");
LJMError = LJM_WriteLibraryConfigS(LJM_DEBUG_LOG_MODE, LJM_DEBUG_LOG_MODE_CONTINUOUS);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_WriteLibraryConfigS error: %s\n", ErrorString);
}

printf("Setting LJM_DEBUG_LOG_FILE to ljm_monday.log\n");
LJMError = LJM_WriteLibraryConfigStringS(LJM_DEBUG_LOG_FILE, "ljm_monday.log");
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_WriteLibraryConfigStringS error: %s\n", ErrorString);
}

LJMError = LJM_ReadLibraryConfigStringS(LJM_DEBUG_LOG_FILE, DebugLogFile);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_ReadLibraryConfigStringS error: %s\n", ErrorString);
}
printf("LJM_DEBUG_LOG_FILE is now %s\n", DebugLogFile);

Possible output:

Setting LJM_DEBUG_LOG_MODE to LJM_DEBUG_LOG_MODE_CONTINUOUS
Setting LJM_DEBUG_LOG_FILE to ljm_monday.log
LJM_DEBUG_LOG_FILE is now ljm_monday.log

For more LJM configurations, see Library Configuration Functions.

LJM_DEBUG_LOG_FILE_MAX_SIZE

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/ljm/users-guide/constants/ljmdebuglogmode
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions#loggerParams
https://labjack.com/support/ljm/users-guide/constants/ljmdebuglogmode
https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigStringS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigStringS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile
https://labjack.com/support/software/api/ljm/function-reference/debugging-functions
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions

Summary

LJM_DEBUG_LOG_FILE_MAX_SIZE is a numerical readable-writable LJM library configuration that limits the number of characters in the debug log file. Once
the debug log file has exceeded LJM_DEBUG_LOG_FILE_MAX_SIZE characters, it will be reset to 0 characters and debug logging will continue. The largest
LJM_DEBUG_LOG_FILE_MAX_SIZE you may use is the largest file size of your operating system. The default is 50000 characters.

The constant LJM_DEBUG_LOG_FILE_MAX_SIZE can be used interchangeably with the string "LJM_DEBUG_LOG_FILE_MAX_SIZE".

Relevant Functions

To read LJM_DEBUG_LOG_FILE_MAX_SIZE, use LJM_ReadLibraryConfigS.

To write LJM_DEBUG_LOG_FILE_MAX_SIZE, use LJM_WriteLibraryConfigS or LJM_LoadConfigurationFile.

Example

[C/C++] Set LJM_DEBUG_LOG_FILE_MAX_SIZE to a larger-than-default size

char ErrorString[LJM_MAX_NAME_SIZE];
int LJMError;
LJMError = LJM_WriteLibraryConfigS(LJM_DEBUG_LOG_FILE_MAX_SIZE, 123456789);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_WriteLibraryConfigS error: %s\n", ErrorString);
}

For more LJM configurations, see Library Configuration Functions.

LJM_DEBUG_LOG_LEVEL
Summary

LJM_DEBUG_LOG_LEVEL is a numerical readable-writable LJM library configuration with the following options:

LJM_STREAM_PACKET = 1
LJM_TRACE = 2
LJM_DEBUG = 4
LJM_INFO = 6
LJM_PACKET = 7
LJM_WARNING = 8
LJM_USER = 9
LJM_ERROR = 10
LJM_FATAL = 12

The constant LJM_DEBUG_LOG_LEVEL can be used interchangeably with the string "LJM_DEBUG_LOG_LEVEL".

Details

LJM_DEBUG_LOG_MODE must allow for logging in order for LJM_DEBUG_LOG_LEVEL to have any effect.

LJM_DEBUG_LOG_LEVEL determines which log messages are output. LJM outputs the debug messages that are of the current LJM_DEBUG_LOG_LEVEL
and greater.

Relevant Functions

To read LJM_DEBUG_LOG_LEVEL, use LJM_ReadLibraryConfigS.

To write LJM_DEBUG_LOG_LEVEL, use LJM_WriteLibraryConfigS or LJM_LoadConfigurationFile.

For more information, see 2.7 Debugging Functions.

Example

[C/C++] Read LJM_DEBUG_LOG_LEVEL then set LJM_DEBUG_LOG_LEVEL to LJM_WARNING

char ErrorString[LJM_MAX_NAME_SIZE];
double value;

int LJMError = LJM_ReadLibraryConfigS(LJM_DEBUG_LOG_LEVEL, &value);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_ReadLibraryConfigS error: %s\n", ErrorString);
}
printf("The default for LJM_DEBUG_LOG_LEVEL is %.00f\n", value);

value = LJM_WARNING;
printf("Setting LJM_DEBUG_LOG_LEVEL to %.00f\n", value);
LJMError = LJM_WriteLibraryConfigS(LJM_DEBUG_LOG_LEVEL, value);

31 Jul 2019

https://labjack.com/support/ljm/users-guide/constants/ljmdebuglogfile
https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/ljm/users-guide/constants/ljmdebuglogmode
https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile
https://labjack.com/support/software/api/ljm/function-reference/debugging-functions

if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_DEBUG_LOG_LEVEL error: %s\n", ErrorString);
}

Possible output:

The default for LJM_DEBUG_LOG_LEVEL is 7
Setting LJM_DEBUG_LOG_LEVEL to 8

For more LJM configurations, see Library Configuration Functions.

LJM_DEBUG_LOG_MODE
Summary

LJM_DEBUG_LOG_MODE is a numerical readable-writable LJM library configuration with the following options:

LJM_DEBUG_LOG_MODE_NEVER = 1

LJM will never log messages
The log thread will never start

LJM_DEBUG_LOG_MODE_CONTINUOUS = 2

LJM will log all messages with priority equal to or greater than the current LJM_DEBUG_LOG_LEVEL
The log thread will start when the first message with priority equal to or greater than the current LJM_DEBUG_LOG_LEVEL is scheduled to be output

LJM_DEBUG_LOG_MODE_ON_ERROR = 3

LJM will collect all messages with priority equal to or greater than the current LJM_DEBUG_LOG_LEVEL, but only output those messages if a log
message with priority equal to or greater than LJM_ERROR (10) is scheduled to be output
The maximum number of messages that will be collected is LJM_DEBUG_LOG_BUFFER_MAX_SIZE
The log thread will start when the first message with priority equal to or greater than the current LJM_DEBUG_LOG_LEVEL is scheduled to be output

The constant LJM_DEBUG_LOG_MODE can be used interchangeably with the string "LJM_DEBUG_LOG_MODE".

Relevant Functions

To read LJM_DEBUG_LOG_MODE, use LJM_ReadLibraryConfigS.

To write LJM_DEBUG_LOG_MODE, use LJM_WriteLibraryConfigS or LJM_LoadConfigurationFile.

For more information, see 2.7 Debugging Functions.

Example

[C/C++] Read LJM_DEBUG_LOG_MODE, set LJM_DEBUG_LOG_MODE, then read it again

char ErrorString[LJM_MAX_NAME_SIZE];
double Value = 0;
int LJMError = LJM_ReadLibraryConfigS(LJM_DEBUG_LOG_MODE, &Value);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_ReadLibraryConfigS error: %s\n", ErrorString);
}
printf("The default for LJM_DEBUG_LOG_MODE is %.00f\n", Value);

Value = LJM_DEBUG_LOG_MODE_CONTINUOUS;
printf("Setting LJM_DEBUG_LOG_MODE to %.00f\n", Value);
LJMError = LJM_WriteLibraryConfigS(LJM_DEBUG_LOG_MODE, Value);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_WriteLibraryConfigS error: %s\n", ErrorString);
}

LJMError = LJM_ReadLibraryConfigS(LJM_DEBUG_LOG_MODE, &Value);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_ReadLibraryConfigS error: %s\n", ErrorString);
}
printf("LJM_DEBUG_LOG_MODE is now %.00f\n", Value);

Possible output:

The default for LJM_DEBUG_LOG_MODE is 1
Setting LJM_DEBUG_LOG_MODE to 2
LJM_DEBUG_LOG_MODE is now 2

For more LJM configurations, see Library Configuration Functions.

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile
https://labjack.com/support/software/api/ljm/function-reference/debugging-functions
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions

LJM_ERROR_CONSTANTS_FILE
Summary

LJM_ERROR_CONSTANTS_FILE is a string-based readable-writable LJM library configuration which sets the absolute or relative path of an existing file to
use as error constants for use with the function LJM_ErrorToString.

The constant LJM_ERROR_CONSTANTS_FILE can be used interchangeably with the string "LJM_ERROR_CONSTANTS_FILE".

Default Value

Windows Vista and later: "C:\ProgramData\LabJack\LJM\ljm_constants.json"
Windows XP: "C:\Documents and Settings\All Users\Application Data\LabJack\LJM\ljm_constants.json"
Mac OS X and Linux: "/usr/local/share/LabJack/LJM/ljm_constants.json"

Relevant Constants

To set LJM_ERROR_CONSTANTS_FILE and LJM_MODBUS_MAP_CONSTANTS_FILE simultaneously, use LJM_CONSTANTS_FILE.

Relevant Functions

To read, use LJM_ReadLibraryConfigStringS.

To write, use LJM_WriteLibraryConfigStringS or LJM_LoadConfigurationFile.

Example

[C/C++] Read LJM_ERROR_CONSTANTS_FILE, then set it to "alternate_error_constants.json"

char ErrorString[LJM_MAX_NAME_SIZE];
char defaultErrorConstantsFile[LJM_MAX_NAME_SIZE];
char * newErrorConstantsFile = "alternate_error_constants.json";

int LJMError = LJM_ReadLibraryConfigStringS(LJM_ERROR_CONSTANTS_FILE, defaultErrorConstantsFile);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_ReadLibraryConfigStringS error: %s\n", ErrorString);
}
printf("The default for LJM_ERROR_CONSTANTS_FILE is %s\n", defaultErrorConstantsFile);

printf("Setting LJM_ERROR_CONSTANTS_FILE to %s\n", newErrorConstantsFile);
LJMError = LJM_WriteLibraryConfigStringS(LJM_ERROR_CONSTANTS_FILE, newErrorConstantsFile);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_WriteLibraryConfigStringS error: %s\n", ErrorString);
}

For more LJM configurations, see Library Configuration Functions.

LJM_LIBRARY_VERSION
Summary

LJM_LIBRARY_VERSION is a numerical read-only LJM library configuration which is used to read the current LJM version.

The constant LJM_LIBRARY_VERSION can be used interchangeably with the string "LJM_LIBRARY_VERSION".

Relevant Functions

To read LJM_LIBRARY_VERSION, use LJM_ReadLibraryConfigS.

Example

[C/C++] Read and display LJM_LIBRARY_VERSION, then display LJM_VERSION

char ErrorString[LJM_MAX_NAME_SIZE];
double Value = 0;
int LJMError = LJM_ReadLibraryConfigS(LJM_LIBRARY_VERSION, &Value);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_ReadLibraryConfigS error: %s\n", ErrorString);
}
printf("LJM_LIBRARY_VERSION is the version of LJM that is\n");
printf(" running and it is %.04f\n", Value);
printf("LJM_VERSION is the version of LJM that this program\n");
printf(" was compiled with and it is %.04f\n", LJM_VERSION);

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/utility/ljmerrortostring
https://labjack.com/support/ljm/users-guide/constants/ljmmodbusmapconstantsfile
https://labjack.com/support/ljm/users-guide/constants/ljmconstantsfile
https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigStringS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigStringS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigS

Possible output:

LJM_LIBRARY_VERSION is the version of LJM that is
 running and it is 1.0203
LJM_VERSION is the version of LJM that this program
 was compiled with and it is 1.0203

For more LJM configurations, see Library Configuration Functions.

LJM_MODBUS_MAP_CONSTANTS_FILE
Summary

LJM_MODBUS_MAP_CONSTANTS_FILE is a string-based readable-writable LJM library configuration which sets the absolute or relative path of an existing
file to use as Modbus constants for use with the functions that use the Modbus map constants, such as LJM_NamesToAddresses.

The constant LJM_MODBUS_MAP_CONSTANTS_FILE can be used interchangeably with the string "LJM_MODBUS_MAP_CONSTANTS_FILE".

Default Value

Windows Vista and later: "C:\ProgramData\LabJack\LJM\ljm_constants.json"
Windows XP: "C:\Documents and Settings\All Users\Application Data\LabJack\LJM\ljm_constants.json"
Mac OS X and Linux: "/usr/local/share/LabJack/LJM/ljm_constants.json"

Relevant Constants

To set LJM_ERROR_CONSTANTS_FILE and LJM_MODBUS_MAP_CONSTANTS_FILE simultaneously, use LJM_CONSTANTS_FILE.

Relevant Functions

To read, use LJM_ReadLibraryConfigStringS.

To write, use LJM_WriteLibraryConfigStringS or LJM_LoadConfigurationFile.

Example

[C/C++] Read LJM_MODBUS_MAP_CONSTANTS_FILE, then set to "alternate_modbus_constants.json"

char ErrorString[LJM_MAX_NAME_SIZE];
char defaultModbusConstantsFile[LJM_MAX_NAME_SIZE];
char * newModbusConstantsFile = "alternate_modbus_constants.json";

int LJMError = LJM_ReadLibraryConfigStringS(LJM_MODBUS_MAP_CONSTANTS_FILE, defaultModbusConstantsFile);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_ReadLibraryConfigStringS error: %s\n", ErrorString);
}
printf("The default for LJM_MODBUS_MAP_CONSTANTS_FILE is %s\n", defaultModbusConstantsFile);

printf("Setting LJM_MODBUS_MAP_CONSTANTS_FILE to %s\n", newModbusConstantsFile);
LJMError = LJM_WriteLibraryConfigStringS(LJM_MODBUS_MAP_CONSTANTS_FILE, newModbusConstantsFile);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_WriteLibraryConfigStringS error: %s\n", ErrorString);
}

For more LJM configurations, see Library Configuration Functions.

LJM_OLD_FIRMWARE_CHECK
Summary

LJM_OLD_FIRMWARE_CHECK is a numerical readable-writable LJM library configuration which sets whether or not LJM will check the Modbus constants file
to make sure the firmware of the current device is compatible with the Modbus register(s) being read from or written to.

The constant LJM_OLD_FIRMWARE_CHECK can be used interchangeably with the string "LJM_OLD_FIRMWARE_CHECK".

Values

0 - false/disabled

1 - true/enabled (default)

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/ljm/users-guide/function-reference/utility/ljmnamestoaddresses
https://labjack.com/support/ljm/users-guide/constants/ljmerrorconstantsfile
https://labjack.com/support/ljm/users-guide/constants/ljmconstantsfile
https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigStringS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigStringS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/ljm/users-guide/constants/ljmmodbusmapconstantsfile

It is recommended to not disable LJM_OLD_FIRMWARE_CHECK.

Details

For all Easy functions and for LJM_MBFBComm, each address being read from or written to that also exists in the Modbus constants file, LJM will compare the
firmware version of the current device against the minimum firmware required for that address. If the device does not have adequate firmware, the function will
abort before communicating with the device and return the error LJME_OLD_FIRMWARE (1307).

Relevant Functions

To read, use LJM_ReadLibraryConfigS.

To write, use LJM_WriteLibraryConfigS or LJM_LoadConfigurationFile.

Affects the error checking of all Easy functions and also LJM_MBFBComm.

Example

[C/C++] Read LJM_OLD_FIRMWARE_CHECK, then disable it.

char ErrorString[LJM_MAX_NAME_SIZE];
double value;

int LJMError = LJM_ReadLibraryConfigS(LJM_OLD_FIRMWARE_CHECK, &value);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_ReadLibraryConfigS error: %s\n", ErrorString);
}
printf("The default for LJM_OLD_FIRMWARE_CHECK is %.00f\n", value);

value = 0;
printf("Setting LJM_OLD_FIRMWARE_CHECK to %.00f\n", value);
LJMError = LJM_WriteLibraryConfigS(LJM_OLD_FIRMWARE_CHECK, value);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_WriteLibraryConfigS error: %s\n", ErrorString);
}

For more LJM configurations, see Library Configuration Functions.

LJM_STREAM_AIN_BINARY
Summary

Sets whether LJM_eStreamRead will return calibrated or uncalibrated (binary) data.

Below, ScansPerRead is a parameter of LJM_eStreamStart.

LJM_STREAM_AIN_BINARY = 0 (default)

LJM_eStreamRead will return calibrated data.

LJM_STREAM_AIN_BINARY = 1

LJM_eStreamRead will return uncalibrated (binary) data.

The constant LJM_STREAM_AIN_BINARY can be used interchangeably with the string "LJM_STREAM_AIN_BINARY".

Remarks

LJM_STREAM_AIN_BINARY does not affect currently running or already initialized streams.

Relevant Functions

To read LJM_STREAM_AIN_BINARY, use LJM_ReadLibraryConfigS.

To write LJM_STREAM_AIN_BINARY, use LJM_WriteLibraryConfigS orLJM_LoadConfigurationFile.

LJM_STREAM_AIN_BINARY affects the behavior of LJM_eStreamRead.

For more LJM configurations, see Library Configuration Functions.

LJM_STREAM_DIGITAL_AUTO_RECOVERY_ERROR_DETECTION_DISABLED

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/easy-functions
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/feedback-functions/ljmmbfbcomm
https://labjack.com/support/ljm/users-guide/constants/ljmmodbusmapconstantsfile
https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile
https://labjack.com/support/ljm/users-guide/function-reference/easy-functions
https://labjack.com/support/ljm/users-guide/function-reference/lowlevel-functions/feedback-functions/ljmmbfbcomm
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamread
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamstart
http://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigS
http://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
http://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamread
http://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions

Summary

Requires LJM 1.2000 or later

LJM_STREAM_DIGITAL_AUTO_RECOVERY_ERROR_DETECTION_DISABLED is a numerical readable and writable LJM library configuration which sets
how LJM handles auto-recovery when the first channel is not firmware-protected from returning 0xFFFF as a valid data value. Channels that never return
0xFFFF during stream are the following:

Analog inputs (AIN0, AIN1, ...)
FIO_STATE
EIO_STATE
CIO_STATE
MIO_STATE
EIO_CIO_STATE
CIO_MIO_STATE

The constant LJM_STREAM_DIGITAL_AUTO_RECOVERY_ERROR_DETECTION_DISABLED can be used interchangeably with the string
"LJM_STREAM_DIGITAL_AUTO_RECOVERY_ERROR_DETECTION_DISABLED".

Values

0 (default) - Error detection is enabled:

If auto-recovery happens and the first channel is not one of the above channels, stream will be stopped and LJM_eStreamRead will return the error
LJME_DIGITAL_AUTO_RECOVERY_ERROR_DETECTED (errorcode 1320).

1 - Error detection is disabled:

If auto-recovery happens and the first channel is not firmware-protected from return a read data value of 0xFFFF, LJM will treat the first channel as if it
cannot return 0xFFFF and will insert the missing scans as LJM_DUMMY_VALUE values.

Details

If the device stream buffer overflows (so that samples can no longer be taken), the LabJack device will count how many scans were skipped. Once LJM has
caught up reading from the device stream buffer, the device will commence collecting scans again. After this, the device will send a packet indicating that auto-
recovery is complete. This auto-recovery complete packet contains the count of how many scans were skipped and uses the delimiter value of 0xFFFF within
the data stream for the first channel to indicate where in the data stream LJM should insert extra LJM_DUMMY_VALUE values to represent skipped scans. To
ensure that 0xFFFF can be used as a delimiter value for the first channel, some channels (such as analog inputs) never return 0xFFFF. However, digital
channels not listed above can return 0xFFFF under nominal conditions. These channels by default are not assumed by LJM to be usable for the first channel
during auto-recovery because a real data value of 0xFFFF is indistinguishable from a delimiter value of 0xFFFF. To allow LJM to treat your first stream channel
as if it will never return a real data value of 0xFFFF, you should:

1. Make sure that your first channel will never return 0xFFFF. If your first channel is FIO_EIO_STATE, for example, you could wire FIO3 to GND.
2. Set LJM_STREAM_DIGITAL_AUTO_RECOVERY_ERROR_DETECTION_DISABLED to 1.

If your first channel cannot be guaranteed to never return 0xFFFF, you can still set
LJM_STREAM_DIGITAL_AUTO_RECOVERY_ERROR_DETECTION_DISABLED to 1, but skipped scans may be inserted by LJM at the wrong place.

Setting a new LJM_STREAM_DIGITAL_AUTO_RECOVERY_ERROR_DETECTION_DISABLED value will not affect stream sessions that are already in
progress.

Relevant Functions

To read LJM_STREAM_DIGITAL_AUTO_RECOVERY_ERROR_DETECTION_DISABLED, use LJM_ReadLibraryConfigS.

To write LJM_STREAM_DIGITAL_AUTO_RECOVERY_ERROR_DETECTION_DISABLED, use LJM_WriteLibraryConfigS or LJM_LoadConfigurationFile.

Example

[C/C++] Read LJM_STREAM_DIGITAL_AUTO_RECOVERY_ERROR_DETECTION_DISABLED then set it to 1.

char ErrorString[LJM_MAX_NAME_SIZE];
double value;

int LJMError = LJM_ReadLibraryConfigS(LJM_STREAM_DIGITAL_AUTO_RECOVERY_ERROR_DETECTION_DISABLED, &value);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_ReadLibraryConfigS error: %s\n", ErrorString);
}
printf("The default for LJM_STREAM_DIGITAL_AUTO_RECOVERY_ERROR_DETECTION_DISABLED is %.00f\n", value);

value = 1;
printf("Setting LJM_STREAM_DIGITAL_AUTO_RECOVERY_ERROR_DETECTION_DISABLED to %.00f\n", value);
printf("I hope one of the digital inputs is wired to GND!\n");
LJMError = LJM_WriteLibraryConfigS(LJM_STREAM_DIGITAL_AUTO_RECOVERY_ERROR_DETECTION_DISABLED, value);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_WriteLibraryConfigS error: %s\n", ErrorString);
}

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile

Output:

The default for LJM_STREAM_DIGITAL_AUTO_RECOVERY_ERROR_DETECTION_DISABLED is 0
Setting LJM_STREAM_DIGITAL_AUTO_RECOVERY_ERROR_DETECTION_DISABLED to 1
I hope one of the digital inputs is wired to GND!

For more LJM configurations, see Library Configuration Functions.

LJM_STREAM_RECEIVE_TIMEOUT_MODE
Summary

Sets how stream data collection should time out.

LJM_STREAM_RECEIVE_TIMEOUT_MODE_CALCULATED = 1 (default)

LJM calculates how long the stream timeout should be, according to the scan rate reported by the device.

LJM_STREAM_RECEIVE_TIMEOUT_MODE_MANUAL = 2

LJM will use the value of LJM_STREAM_RECEIVE_TIMEOUT_MS as the stream timeout.

The constant LJM_STREAM_RECEIVE_TIMEOUT_MODE can be used interchangeably with the string "LJM_STREAM_RECEIVE_TIMEOUT_MODE".

Remarks

LJM_STREAM_RECEIVE_TIMEOUT_MODE does not affect currently running or already initialized streams.

Relevant Functions

To read LJM_STREAM_RECEIVE_TIMEOUT_MODE, use LJM_ReadLibraryConfigS.

To write LJM_STREAM_RECEIVE_TIMEOUT_MODE, use LJM_WriteLibraryConfigS orLJM_LoadConfigurationFile.

LJM_STREAM_RECEIVE_TIMEOUT_MODE affects the behavior of LJM_eStreamRead.

For more LJM configurations, see Library Configuration Functions.

LJM_STREAM_RECEIVE_TIMEOUT_MS
Summary

Manually sets the timeout for LJM's stream data collection. Writing to this configuration sets LJM_STREAM_RECEIVE_TIMEOUT_MODE
to LJM_STREAM_RECEIVE_TIMEOUT_MODE_MANUAL.

Writing a non-zero value to LJM_STREAM_RECEIVE_TIMEOUT_MS will manually set the timeout for LJM's stream data collection. Note that
using LJM_STREAM_RECEIVE_TIMEOUT_MODE of LJM_STREAM_RECEIVE_TIMEOUT_MODE_CALCULATED is almost always better than using manual non-
zero LJM_STREAM_RECEIVE_TIMEOUT_MS value.

Writing 0 to LJM_STREAM_RECEIVE_TIMEOUT_MS will cause LJM to never time out. This allows you to set up triggered stream or externally clocked
stream on the T7. This is usually used in conjunction with LJM_STREAM_SCANS_RETURN set to LJM_STREAM_SCANS_RETURN_ALL_OR_NONE.

The constant LJM_STREAM_RECEIVE_TIMEOUT_MS can be used interchangeably with the string "LJM_STREAM_RECEIVE_TIMEOUT_MS".

Remarks

LJM_STREAM_RECEIVE_TIMEOUT_MS does not affect currently running or already initialized streams.

Relevant Functions

To read LJM_STREAM_RECEIVE_TIMEOUT_MS, use LJM_ReadLibraryConfigS.

To write LJM_STREAM_RECEIVE_TIMEOUT_MS, use LJM_WriteLibraryConfigS orLJM_LoadConfigurationFile.

LJM_STREAM_RECEIVE_TIMEOUT_MS affects the behavior of LJM_eStreamRead.

Example

[C/C++] Set the LJM_STREAM_RECEIVE_TIMEOUT_MS mode to infinite.

char ErrorString[LJM_MAX_NAME_SIZE];
int LJMError = 0;
LJMError = LJM_WriteLibraryConfigS(
 LJM_STREAM_RECEIVE_TIMEOUT_MS,

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/software/api/ljm/constants/ljmstreamreceivetimeoutms
https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamread
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/datasheets/t-series/communication/stream-mode
https://labjack.com/support/software/api/ljm/constants/ljmstreamscansreturn
https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamread

 0
);
if (LJMError != LJME_NOERROR) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_WriteLibraryConfigS error: %s\n", ErrorString);
}

For more LJM configurations, see Library Configuration Functions.

LJM_STREAM_SCANS_RETURN
Summary

Sets how LJM_eStreamRead will return data.

Below, ScansPerRead is a parameter of LJM_eStreamStart.

LJM_STREAM_SCANS_RETURN_ALL = 1 (default)

A mode that will cause LJM_eStreamRead to sleep until the full ScansPerRead scans are collected by LJM.
This mode may not be appropriate for stream types that are not consistently timed, such as externally clocked stream mode.

LJM_STREAM_SCANS_RETURN_ALL_OR_NONE = 2

A mode that will cause LJM_eStreamRead to never sleep, and instead either:
consume ScansPerRead scans and return LJME_NOERROR, or
consume no scans and return LJME_NO_SCANS_RETURNED.

The constant LJM_STREAM_SCANS_RETURN can be used interchangeably with the string "LJM_STREAM_SCANS_RETURN".

Remarks

LJM_STREAM_SCANS_RETURN does not affect currently running or already initialized streams.

Relevant Functions

To read LJM_STREAM_SCANS_RETURN, use LJM_ReadLibraryConfigS.

To write LJM_STREAM_SCANS_RETURN, use LJM_WriteLibraryConfigS or LJM_LoadConfigurationFile.

LJM_STREAM_SCANS_RETURN affects the behavior of LJM_eStreamRead.

Example

[C/C++] Set the LJM_STREAM_SCANS_RETURN mode to LJM_STREAM_SCANS_RETURN_ALL_OR_NONE.

char ErrorString[LJM_MAX_NAME_SIZE];
int LJMError = 0;
LJMError = LJM_WriteLibraryConfigS(
 LJM_STREAM_SCANS_RETURN,
 LJM_STREAM_SCANS_RETURN_ALL_OR_NONE
);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_WriteLibraryConfigS error: %s\n", ErrorString);
}

For more LJM configurations, see Library Configuration Functions.

LJM_STREAM_TCP_RECEIVE_BUFFER_SIZE
Summary

Requires LJM 1.2000 or later

Sets the TCP receive buffer size for LJM's stream data collection. This can reduce the frequency of auto-recovery. Behavior varies by platform.

For a background on the receive buffer, see LJM_GetStreamTCPReceiveBufferStatus.

Writing 0 to LJM_STREAM_TCP_RECEIVE_BUFFER_SIZE will use the OS default receive buffer size, which probably includes auto-tuning. This is
appropriate for most use cases. The default LJM_STREAM_TCP_RECEIVE_BUFFER_SIZE is 0.

Writing a non-zero value to LJM_STREAM_TCP_RECEIVE_BUFFER_SIZE will manually set the receive buffer size. Internally, setsockopt is called with
SO_RCVBUF as the option parameter.

Since behavior for setting the receive buffer size varies by platform, you should try out different values of LJM_STREAM_TCP_RECEIVE_BUFFER_SIZE until
you find the maximum. For example, you should start with a small value like 65535 (which doesn't require window scaling) and exponentially increase it until an

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamread
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamstart
https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamread
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/software/api/ljm/function-reference/ljmestreamstart#auto-recovery
https://labjack.com/support/software/api/ljm/function-reference/ljmgetstreamtcpreceivebufferstatus

error occurs. Your test program should set LJM_STREAM_TCP_RECEIVE_BUFFER_SIZE, then start stream and call
LJM_GetStreamTCPReceiveBufferStatus, ensuring that the ReceiveBufferBytesSize is equivalent to your intended stream receive buffer size.

You may also wish to use Wireshark to capture packets to see what the maximum window size your host computer reports the window size to be. To do so,
you can start a new capture with a filter like ip.addr == 192.168.1.207 , where 192.168.1.207 is your LabJack's IP address, then find the first packet addressed to
192.168.1.207 with port 702. The window size and window scaling of that packet determines the window size as reported to the LabJack device.

Here are some known platform differences:

A Windows 10 computer was shown to be able to increase the receive buffer size until about 2147483647, which is the maximum number that Windows'
recv function can take as the len parameter (due to the len parameter being a signed 32-bit integer). After this point, LJM will
return LJME_NEGATIVE_RECEIVE_BUFFER_SIZE (errorcode 1321).
A macOS computer was shown to be able to increase the receive buffer size until about 7400000, when LJM_eStreamStart returns
LJME_SOCKET_LEVEL_ERROR.
Linux may accept any receive buffer size and silently reduce it to adhere to system configurations.

The constant LJM_STREAM_TCP_RECEIVE_BUFFER_SIZE can be used interchangeably with the string "LJM_STREAM_TCP_RECEIVE_BUFFER_SIZE".

Remarks

LJM_STREAM_TCP_RECEIVE_BUFFER_SIZE does not affect currently running or already initialized streams.

Relevant Functions

To read LJM_STREAM_TCP_RECEIVE_BUFFER_SIZE, use LJM_ReadLibraryConfigS.

To write LJM_STREAM_TCP_RECEIVE_BUFFER_SIZE, use LJM_WriteLibraryConfigS orLJM_LoadConfigurationFile.

LJM_STREAM_TCP_RECEIVE_BUFFER_SIZE affects the behavior of LJM_eStreamStart.

For more LJM configurations, see Library Configuration Functions.

LJM_STREAM_TRANSFERS_PER_SECOND
Summary

LJM_STREAM_TRANSFERS_PER_SECOND is a numerical readable and writable LJM library configuration which sets how many times per second LJM's
stream thread attempts to receive stream packet(s) from the device.

The constant LJM_STREAM_TRANSFERS_PER_SECOND can be used interchangeably with the string "LJM_STREAM_TRANSFERS_PER_SECOND".

Details

LJM_STREAM_TRANSFERS_PER_SECOND is an advanced configuration. Modifying it is not recommended for most users.

Increasing LJM_STREAM_TRANSFERS_PER_SECOND to a higher value will allow for less latency in receiving stream data, since LJM will receive data from
the device more often (in smaller quantities). Increasing the LJM_STREAM_TRANSFERS_PER_SECOND too much will cause the data contained in each
packet to decrease, which will cause unnecessary overhead and potentially cause scans to be missed.

You can enable debug logging with LJM_TRACE as the LJM_DEBUG_LOG_LEVEL to see how stream is set up. After running a test stream, search the log
file for the term "streaming initialized" to see what effects LJM_STREAM_TRANSFERS_PER_SECOND has on stream setup. Make sure to disable debug
logging for your real stream sessions after finding settings for stream setup that looks reasonable, since debug logging consumes a significant amount of
processing. LJM's stream setup is deterministic, so given the same parameters to LJM_eStreamStart and the same stream configurations, stream will be set
up the same way every time.

Decreasing LJM_STREAM_TRANSFERS_PER_SECOND to a lower value will theoretically cause less overhead in stream, since LJM will receive data from
the device less often (in larger quantities), but may have little to no effect. When decreasing LJM_STREAM_TRANSFERS_PER_SECOND, it is recommended
to increase the size of the stream buffer on the device. See the Modbus register STREAM_BUFFER_SIZE_BYTES (address: 4012).

Setting a new LJM_STREAM_TRANSFERS_PER_SECOND value will not affect stream threads that are already in progress.

Relevant Functions

To read LJM_STREAM_TRANSFERS_PER_SECOND, use LJM_ReadLibraryConfigS.

To write LJM_STREAM_TRANSFERS_PER_SECOND, use LJM_WriteLibraryConfigS or LJM_LoadConfigurationFile.

Example

[C/C++] Read LJM_STREAM_TRANSFERS_PER_SECOND then set it to 100.

char ErrorString[LJM_MAX_NAME_SIZE];
double value;

int LJMError = LJM_ReadLibraryConfigS(LJM_STREAM_TRANSFERS_PER_SECOND, &value);
if (LJMError != 0) {

31 Jul 2019

https://labjack.com/support/software/api/ljm/function-reference/ljmgetstreamtcpreceivebufferstatus
https://docs.microsoft.com/en-us/windows/desktop/api/winsock/nf-winsock-recv
https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile
https://labjack.com/support/ljm/users-guide/function-reference/ljmestreamstart
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/software/api/ljm/function-reference/ljmestreamstart#low-latency
https://labjack.com/support/ljm/users-guide/constants/ljmdebuglogmode
https://labjack.com/support/modbus/map
https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile

 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_ReadLibraryConfigS error: %s\n", ErrorString);
}
printf("The default for LJM_STREAM_TRANSFERS_PER_SECOND is %.00f\n", value);

value = 100;
printf("Setting LJM_STREAM_TRANSFERS_PER_SECOND to %.00f\n", value);
LJMError = LJM_WriteLibraryConfigS(LJM_STREAM_TRANSFERS_PER_SECOND, value);
if (LJMError != 0) {
 LJM_ErrorToString(LJMError, ErrorString);
 printf("LJM_WriteLibraryConfigS error: %s\n", ErrorString);
}

Possible output:

The default for LJM_STREAM_TRANSFERS_PER_SECOND is 25
Setting LJM_STREAM_TRANSFERS_PER_SECOND to 100

For more LJM configurations, see Library Configuration Functions.

LJM_USE_TCP_INIT_FOR_T7_WIFI_TCP
Summary

LJM_USE_TCP_INIT_FOR_T7_WIFI_TCP is a numerical readable-writable LJM library configuration that sets whether LJM will use UDP or TCP for T7 WiFi
connection initialization when ConnectionType is TCP.

The constant LJM_USE_TCP_INIT_FOR_T7_WIFI_TCP can be used interchangeably with the string "LJM_USE_TCP_INIT_FOR_T7_WIFI_TCP".

LJM_USE_TCP_INIT_FOR_T7_WIFI_TCP was added in LJM 1.1500.

Details

0 - false/disabled - Use UDP

1 - true/enabled (Default) - Use TCP

Relevant Functions

To read LJM_USE_TCP_INIT_FOR_T7_WIFI_TCP, use LJM_ReadLibraryConfigS.

To write LJM_USE_TCP_INIT_FOR_T7_WIFI_TCP, use LJM_WriteLibraryConfigS or LJM_LoadConfigurationFile.

For more LJM configurations, see Library Configuration Functions.

4 - Error Codes
Add new comment

Error Codes Overview

Error codes from the ljm_constants.json file. For more information about error codes look at the installed error codes page.

Error
Code

Error Name Description

0 LJ_SUCCESS

200 LJME_WARNINGS_BEGIN This indicates where the warning codes start is not a real warning code.

399 LJME_WARNINGS_END This indicates where the warning codes end is not a real warning code.

201 LJME_FRAMES_OMITTED_DUE_TO_PACKET_SIZE
Some read/write operation(s) were not sent to the device because the
Feedback command being created was too large for the device, given the
current connection type.

202 LJME_DEBUG_LOG_FAILURE
The debug log file could not be written to. Check the
LJM_DEBUG_LOG_FILE and related LJM configurations.

203 LJME_USING_DEFAULT_CALIBRATION

The device's calibration could not be read, so the nominal calibration
values were used. Possible Cause: Incompatible microSD card installed.
See SD Card section of T7 Datasheet.

The message could not be logged because the debug log file has not been

31 Jul 2019

https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/ljm/users-guide/function-reference/LJMReadLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/ljm/users-guide/function-reference/LJMLoadConfigurationFile
https://labjack.com/support/ljm/users-guide/function-reference/library-configuration-functions
https://labjack.com/support/software/api/ljm/error-codes#comment-form
https://labjack.com/support/installed-error-codes

https://labjack.com/support/ud

204 LJME_DEBUG_LOG_FILE_NOT_OPEN opened.

254 FEATURE_NOT_IMPLEMENTED

1200 LJME_MODBUS_ERRORS_BEGIN
This indicates where the Modbus error codes start is not a real Modbus
error code.

1216 LJME_MODBUS_ERRORS_END
This indicates where the Modbus error codes end is not a real Modbus
error code.

1201 LJME_MBE1_ILLEGAL_FUNCTION The device received an invalid function code.

1202 LJME_MBE2_ILLEGAL_DATA_ADDRESS The device received an invalid address.

1203 LJME_MBE3_ILLEGAL_DATA_VALUE
The device received a value that could not be written to the specified
address.

1204 LJME_MBE4_SLAVE_DEVICE_FAILURE The device encountered an error.

1205 LJME_MBE5_ACKNOWLEDGE The device acknowledges the request, but will take some time to process.

1206 LJME_MBE6_SLAVE_DEVICE_BUSY The device is busy and cannot respond currently.

1208 LJME_MBE8_MEMORY_PARITY_ERROR The device detected a memory parity error.

1210 LJME_MBE10_GATEWAY_PATH_UNAVAILABLE The requested route was not available.

1211 LJME_MBE11_GATEWAY_TARGET_NO_RESPONSE The requested route was available but the device failed to respond.

1220 LJME_LIBRARY_ERRORS_BEGIN
This indicates where the LJM error codes start is not a real LJM error
code.

1399 LJME_LIBRARY_ERRORS_END This indicates where the LJM error codes end is not a real LJM error code.

1221 LJME_UNKNOWN_ERROR
LJM reached an unexpected state. Please contact LabJack support if
you've received this error.

1222 LJME_INVALID_DEVICE_TYPE LJM received an unexpected device type.

1223 LJME_INVALID_HANDLE LJM reached an invalid state.

1224 LJME_DEVICE_NOT_OPEN
The requested handle did not refer to an open device. Perhaps the Open
call failed but you still tried to use the returned handle. Perhaps your code
called Close somewhere and then after tried to use the handle.

1225 LJME_STREAM_NOT_INITIALIZED The requested device does not have a stream initialized in LJM.

1226 LJME_DEVICE_DISCONNECTED
The device could not be contacted and LJM is not configured to heal
device connections (see LJM config LJM_HEAL_CONNECTION_MODE).

1227 LJME_DEVICE_NOT_FOUND
A device matching the requested device parameters could not be found
and therefore could not be opened.

1229 LJME_DEVICE_ALREADY_OPEN
The device being registered was already registered. Please contact
LabJack support if you've received this error.

1230 LJME_DEVICE_CURRENTLY_CLAIMED_BY_ANOTHER_PROCESS

At least one matching device was found, but cannot be claimed by this
process because a different process has already claimed it. Either close
the device handle in your other process (i.e. program or application) or
close the other process. Then try opening the device again.

1231 LJME_CANNOT_CONNECT
At least one device matching the requested device parameters was found,
but a connection could not be established.

1233 LJME_SOCKET_LEVEL_ERROR A TCP socket-level error occurred.

1236 LJME_CANNOT_OPEN_DEVICE The device could not be opened.

1237 LJME_CANNOT_DISCONNECT An error occurred while attempting to disconnect.

1238 LJME_WINSOCK_FAILURE A Windows WINSOCK error occurred.

1239 LJME_RECONNECT_FAILED
The device could not be contacted. LJM is configured to heal device
connections and the reconnection attempt failed.

1243 LJME_U3_NOT_SUPPORTED_BY_LJM
LJM does not support UD-series LabJack devices; use the UD driver ()

31 Jul 2019

https://labjack.com/support/ud

https://labjack.com/support/ud

https://labjack.com/support/ud

1246 LJME_U6_NOT_SUPPORTED_BY_LJM
LJM does not support UD-series LabJack devices; use the UD driver ()

1249 LJME_UE9_NOT_SUPPORTED_BY_LJM
LJM does not support UD-series LabJack devices; use the UD driver ()

1250 LJME_INVALID_ADDRESS The requested address was not found.

1251 LJME_INVALID_CONNECTION_TYPE LJM received an unexpected connection type.

1252 LJME_INVALID_DIRECTION LJM received an unexpected read/write direction.

1253 LJME_INVALID_FUNCTION LJM received an unexpected Modbus function.

1254 LJME_INVALID_NUM_REGISTERS LJM received an unexpected number of registers.

1255 LJME_INVALID_PARAMETER
LJM received an unexpected parameter. Please check the LabJackM.h
description of the function that returned this error for an explanation.

1256 LJME_INVALID_PROTOCOL_ID LJM received an unexpected Modbus protocol ID.

1257 LJME_INVALID_TRANSACTION_ID LJM received an unexpected Modbus transaction ID.

1259 LJME_UNKNOWN_VALUE_TYPE LJM received an unexpected data type.

1260 LJME_MEMORY_ALLOCATION_FAILURE LJM was unable to allocate needed memory.

1261 LJME_NO_COMMAND_BYTES_SENT No Modbus command bytes could be sent to the device.

1262 LJME_INCORRECT_NUM_COMMAND_BYTES_SENT
An incorrect number of Modbus command bytes were sent to the device,
as reported by the underlying driver.

1263 LJME_NO_RESPONSE_BYTES_RECEIVED No Modbus response bytes could be received from the device.

1264 LJME_INCORRECT_NUM_RESPONSE_BYTES_RECEIVED
An incorrect/unexpected number of Modbus response bytes were received
from the device.

1265 LJME_MIXED_FORMAT_IP_ADDRESS
LJM received an IP identifier that seemed to be formatted in both
hexadecimal and decimal.

1266 LJME_UNKNOWN_IDENTIFIER LJM received an unknown identifier type.

1267 LJME_NOT_IMPLEMENTED
An unimplemented functionality was attempted. Please contact LabJack
support if you've received this error so we can implement it for you!

1268 LJME_INVALID_INDEX
LJM received an index/offset that was out-of-bounds. Please contact
LabJack support if you've received this error.

1269 LJME_INVALID_LENGTH
LJM received a length that did not make sense. Please contact LabJack
support if you've received this error.

1270 LJME_ERROR_BIT_SET
A Modbus response had the error bit set. Please contact LabJack support if
you've received this error.

1271 LJME_INVALID_MAXBYTESPERMBFB
LJM_AddressesToMBFB received a value of MaxBytesPerMBFB that was
too small.

1272 LJME_NULL_POINTER
LJM received a null pointer for a pointer parameter that is required to not
be null.

1273 LJME_NULL_OBJ
LJM found a null object. Please contact LabJack support if you've received
this error.

1274 LJME_RESERVED_NAME The requested name was invalid/reserved.

1275 LJME_UNPARSABLE_DEVICE_TYPE LJM received a device type string that was unparsable or unexpected.

1276 LJME_UNPARSABLE_CONNECTION_TYPE LJM received a connection type string that was unparsable or unexpected.

1277 LJME_UNPARSABLE_IDENTIFIER LJM received a identifier string that was unparsable or unexpected.

1278 LJME_PACKET_SIZE_TOO_LARGE
The Modbus packet to be sent or the expected Modbus packet to be
received exceeded the maximum packet size for the device connection.

1279 LJME_TRANSACTION_ID_ERR LJM received a mismatched Modbus transaction ID from the device.

1280 LJME_PROTOCOL_ID_ERR LJM received a mismatched Modbus protocol ID from the device.

31 Jul 2019

https://labjack.com/support/ud
https://labjack.com/support/ud

http://labjack.com/support/software/api/ljm/function-
reference/ljmestreamstart#externally-clocked

1281 LJME_LENGTH_ERR LJM received a mismatched Modbus packet length from the device.

1282 LJME_UNIT_ID_ERR LJM received a mismatched Modbus unit ID from the device.

1283 LJME_FUNCTION_ERR LJM received a mismatched Modbus function ID from the device.

1284 LJME_STARTING_REG_ERR LJM received a mismatched Modbus register address from the device.

1285 LJME_NUM_REGS_ERR LJM received a mismatched Modbus number of registers from the device.

1286 LJME_NUM_BYTES_ERR LJM received a mismatched Modbus number of bytes from the device.

1289 LJME_CONFIG_FILE_NOT_FOUND The LJM configuration file could not be opened for reading.

1290 LJME_CONFIG_PARSING_ERROR An error occurred while parsing the LJM configuration file.

1291 LJME_INVALID_NUM_VALUES LJM received an invalid number of values.

1292 LJME_CONSTANTS_FILE_NOT_FOUND
The LJM error constants file and/or Modbus constants file could not be
opened for reading.

1293 LJME_INVALID_CONSTANTS_FILE
The LJM error constants file and/or Modbus constants file could not be
parsed.

1294 LJME_INVALID_NAME
The requested name was not found in the register loaded from the
constants file (if the constants file is loaded).

1296 LJME_OVERSPECIFIED_PORT The requested connection type is ANY and port is specified.

1297 LJME_INTENT_NOT_READY
The internal operation object was not prepared correctly. Please contact
LabJack support if you've received this error.

1298 LJME_ATTR_LOAD_COMM_FAILURE
A device matching the requested device parameters was found, claimed,
and connected, but a communication error prevented device attributes
from being loaded to LJM. The device was not opened.

1299 LJME_INVALID_CONFIG_NAME LJM received an unknown configuration name.

1300 LJME_ERROR_RETRIEVAL_FAILURE
An error occurred on the device and LJM was unable to retrieve more
information about that error. Please contact LabJack support if you've
received this error.

1301 LJME_LJM_BUFFER_FULL
The LJM stream buffer was filled with stream data and stream was
stopped.

1302 LJME_COULD_NOT_START_STREAM
LJM could not start stream. Input may have incorrect or a different error
may have occurred.

1303 LJME_STREAM_NOT_RUNNING LJM is not streaming data from the device.

1304 LJME_UNABLE_TO_STOP_STREAM The stream could not be stopped.

1305 LJME_INVALID_VALUE LJM received a value that was not expected.

1306 LJME_SYNCHRONIZATION_TIMEOUT

LJM did not receive data from the device for longer than the timeout
specified by LJM_STREAM_RECEIVE_TIMEOUT_MS. Externally clocked
stream setup is described here:

1307 LJME_OLD_FIRMWARE
The current firmware version of the device was not sufficient to read/write
a requested register, as according to the loaded LJM constants file.

1308 LJME_CANNOT_READ_OUT_ONLY_STREAM The stream running is out-only and does not produce data values.

1309 LJME_NO_SCANS_RETURNED
The LJM configuration LJM_STREAM_SCANS_RETURN is set to
LJM_STREAM_SCANS_RETURN_ALL_OR_NONE and the full
ScansPerRead scans have not be received.

1310 LJME_TEMPERATURE_OUT_OF_RANGE
LJM_TCVoltsToTemp received a temperature that was out of range for the
given thermocouple type.

1311 LJME_VOLTAGE_OUT_OF_RANGE
LJM_TCVoltsToTemp received a voltage that was out of range for the
given thermocouple type.

1312 LJME_FUNCTION_DOES_NOT_SUPPORT_THIS_TYPE
The function does not support the given data type. For example,
LJM_eReadName and LJM_eReadAddress do not support reading

31 Jul 2019

http://labjack.com/support/software/api/ljm/function-reference/ljmestreamstart#externally-clocked

LJM_STRING values, which are too large.

1313 LJME_INVALID_INFO_HANDLE
The given info handle did not exist. (It may have been passed to
LJM_CleanInfo already.)

1314 LJME_NO_DEVICES_FOUND
An Open/OpenS call was called - with any device type, any connection
type, and any identifier - but no devices were found.

1316 LJME_AUTO_IPS_FILE_NOT_FOUND
The LJM auto IPs file could not be found or read. LJM will attempt to
create the auto IPs file, as needed.

1317 LJME_AUTO_IPS_FILE_INVALID The LJM auto IPs file contents were not valid.

1318 LJME_INVALID_INTERVAL_HANDLE The given interval handle did not exist.

1319 LJME_NAMED_MUTEX_PERMISSION_DENIED
There was a permission error while accessing a system-level named
mutex. Try restarting your computer.

2300 MODBUS_RSP_OVERFLOW Response packet greater than max packet size.

2301 MODBUS_CMD_OVERFLOW Command packet greater than max packet size

2310 MODBUS_STRING_CMD_TOO_BIG

2311 MODBUS_STRING_PARAM_TOO_BIG

2312 MODBUS_STRING_BAD_NUM_PARAMS

2313 MODBUS_INVALID_NUM_REGISTERS Register data types does not match the number of registers in the request.

2314 MODBUS_READ_TOO_LARGE

2315 MODBUS_NUM_REGS_MUST_BE_EVEN
Register or group of registers requires the access be in an even number of
registers.

2316 MODBUS_STRING_MISSING_NULL Strings must be terminated with a null (\0, 0x00).

2330 STARTUP_CONFIG_INVALID_CODE

2331 STARTUP_CONFIG_INVALID_READ An attempt was made to read beyond the configuration structure.

2340 USER_RAM_FIFO_MUST_BE_EMPTY The FIFO can not contain any data when data size is being changed.

2343 USER_RAM_FIFO_INSUFFICIENT_VALUES The FIFO contains fewer values than requested.

2344 USER_RAM_FIFO_INSUFFICIENT_SPACE
FIFO does not have enough free space to hold the requested write. No
data was added to the FIFO.

2345 USER_RAM_FIFO_SIZE_MUST_BE_EVEN The number of bytes allocated to the FIFO must be even..

2350 INTFLASH_ADD_INVALID

2351 INTFLASH_CODE_INVALID

2352 INTFLASH_OP_PROHIBITED Attempted to read or write a section that is not allowed.

2353 INTFLASH_SECTION_OVERWRITE Attempted to write or read beyond the currently selected section.

2354 INTFLASH_KEY_INVALID Specified Key and Address mismatch.

2355 FLASH_VERIFICATION_FAILED A write to flash failed to set one or more bits to the desired values.

2356 FLASH_ERASE_FAILED One or more bits failed to set during a flash erase operation.

2358 INTFLASH_UNAVAILABLE Flash can not be accessed due to the WiFi module booting up.

2359 FILEIO_UNAVAILABLE The file system can not be accessed due to the WiFi module booting up.

2370 AIN_RANGE_INVALID Specified range not available on this device.

2371 AIN_SETTLING_INVALID Specified settling is greater than device max.

2372 AIN_SET_TO_BINARY
Analog input system currently set to binary. Some operations, such as
AIN_EF, will fail.

2373 AIN_NEGATIVE_CHANNEL_INVALID
For channel range 0-13: Negative channel must be even channel number +
1. For extended channel range 48-127: Negative channel must be channel
number + 8.

31 Jul 2019

2374 AIN_ALL_ZERO_ONLY Only a value of zero may be written to this address.
2375 AIN_RESOLUTION_INVALID Selected resolution is invalid. Valid range is 0-5 for T4 and 0-12 for T7.

2380 LUA_VM_STATE_NO_CHANGE

2381 LUA_INITIALIZATION_ERROR

2382 LUA_INVALID_NUM_IO_FLOATS Requested more than the max possible number of IO floats.

2383 LUA_IO_FLOATMEM_OVERFLOW Attempt to read/write beyond the currently allocated IO space.

2384 LUA_INVALID_MODE

2385 LUA_IS_RUNNING A running script is preventing the requested operation.

2386 LUA_CODE_BUFFER_EMPTY Attempted to run a program that is not present.

2387 LUA_DEBUG_IS_DISABLED Attempted to read from debug buffer while debug is disabled.

2388 LUA_TABLE_SMALLER_THAN_SPECIFIED_SIZE The Lua table provided is too small to process the request.

2389 LUA_IS_CLOSING The Lua VM is being closed, usually takes less than 100 ms.

2400 SYSTEM_MEMORY_BEREFT Insufficient memory to perform the requested action.

2401 SYSTEM_MEMORY_OVERWRITE Attempted to overwrite a buffer.

2402 SYSTEM_REBOOT_CODE_INVALID Invalid code supplied when issuing a reboot.

2403 SYSTEM_READ_OVERRUN

2404 SYSTEM_INVALID_PIN

2405 SYSTEM_NVRAM_UNAVAILABLE NVRAM is not available on this device.

2406 SYSTEM_NVRAM_INVALID_ADDRESS The specified NVRAM location is not available on this device.

2407 SYSTEM_WAIT_TOO_LONG The requested wait time is beyond the max allowed.

2408 SYSTEM_INCOMPATIBLE_FIRMWARE_VERSION The firmware image is not compatible with this device.

2420 DEVICE_NAME_MUST_BE_ALPHANUM Attempted to write a device name with invalid characters.

2450 POWER_INVALID_SETTING Unknown value specified.

2451 POWER_USB_NEEDS_20MHZ_OR_MORE Core must be running at 20MHz minimum for USB to operate.

2452 POWER_NO_CHANGE

2456 POWER_CAN_NOT_CHANGE_USED_CONNECTION Can not change the power level of the connected medium.

2460 POWER_ANALOG_OFF Analog input system is powered down.

2490 WIFI_NOT_ASSOCIATED
WiFi needs to be connected to a network before the requested action can
be performed.

2500 HW_DIO_NOT_AVAILABLE

2501 DIO_SET_TO_ANALOG
The digital line addressed is set to analog. Digital operations can not be
performed.

2508 HW_CNTRA_NOT_AVAILABLE Counter A is being used by another system.

2509 HW_CNTRB_NOT_AVAILABLE Counter B is being used by another system.

2510 HW_CNTRC_NOT_AVAILABLE Counter C is being used by another system.

2511 HW_CNTRD_NOT_AVAILABLE Counter D is being used by another system.

2520 HW_CIO0_NOT_AVAILABLE

2521 HW_CIO1_NOT_AVAILABLE

2523 HW_DAC1_NOT_AVAILABLE

2550 EF_DIO_HAS_NO_TNC_FEATURES

2551 EF_INVALID_TYPE The selected type is not recognized.

31 Jul 2019

2552 EF_TYPE_NOT_SUPPORTED The selected type is not recognized.

2553 EF_PIN_TYPE_MISMATCH The requested type is not supported on this DIO pin.

2554 EF_CLOCK_SOURCE_NOT_ENABLED Attempted to disable a clock source that is not running.

2555 EF_32BIT_DATA_INTO_16BIT_REG
A number greater than 16-bits was written to a clock source configured for
16-bits.

2556 EF_SET_TO_32BIT

2557 EF_SMOOTH_VALUE_OUT_OF_RANGE

2558 EF_32BIT_REQUIRES_BOTH_CNT0and1 Both counter 1 and counter 2 must be disabled before enabling counter 0.

2559 EF_PRESCALE_VALUE_INVALID
Specified prescale value is not supported. Supported values are
1,2,4,8,16,32,64, and 256

2560 EF_PIN_RESERVED Pin is already used by another system.

2561 EF_INVALID_DIO_NUMBER DIO addresses is not supported on this device.

2563 EF_LINE_MUST_BE_LOW_BEFORE_STARTING The DIO line must be set to output low to ensure proper signal generation.

2564 EF_INVALID_DIVISOR

2565 EF_VALUE_GREATER_THAN_PERIOD Value specified is greater than clock source roll value.

2566 EF_CAN_NOT_CHANGE_INDEX_WHILE_ENABLED The index of a DIO_EF can not be changed while that DIO_EF is enabled.

2580 AIN_EF_INVALID_TYPE The type index specified is not supported.

2581 AIN_EF_INVALID_NUM_SAMPLES Too many samples specified.

2582 AIN_EF_CALCULATION_ERROR

2583 AIN_EF_CHANNEL_INACTIVE
AIN_EF channel has not been initialized. To initialize, set the index to a
non-zero value.

2584 AIN_EF_CALCULATION_OUT_OF_RANGE

2585 AIN_EF_INVALID_CHANNEL

2586 AIN_EF_INVALID_CJC_REGISTER

2587 AIN_EF_STREAM_START_FAILURE Could not start the data collection stream.

2588 AIN_EF_COULD_NOT_FIND_PERIOD Failed to detect a period to perform calculations over.

2589 AIN_EF_MUST_BE_DIFFERENTIAL The selected AIN must be set to differential.

2590 AIN_EF_SCAN_TIME_TOO_LONG
The data collection time (number of samples / scan_rate) is too big. Limit is
set to 180 ms as of firmware 1.0170

2600 STREAM_NEED_AT_LEAST_ONE_CHN The list of channels to stream is empty.

2601 STREAM_CLOCK_BASE_NOT_WRITABLE Stream clock base is read only.

2602 STREAM_EXTCLK_AND_GATE_MX

2603 STREAM_IN_SPONTANEOUS_MODE Stream data can not be read with commands while in spontaneous mode.

2604 STREAM_USB_PKT_OVERFLOW

2605 STREAM_IS_ACTIVE The requested operation can not be performed while stream is running.

2606 STREAM_CONFIG_INVALID Stream resolution can not be greater than 8.

2607 STREAM_CHN_LIST_INVALID The channel list contains an unstreamable address.

2608 STREAM_SCAN_RATE_INVALID
The scan rate times the number of channels per scan is too great for this
device.

2609 STREAM_OUT_BUFF_TOO_BIG

2610 STREAM_OUT_NUM_INVALID An invalid stream out number was specified.

2611 STREAM_DATA_TYPE_INVALID An unsupported data types was specified.

31 Jul 2019

2612 STREAM_TARGET_CONFIG_INVALID Stream must be set to either spontaneous or command-response.

2613 STREAM_OUT_BUFF_FULL
Attempted to write more data than the buffer can hold. Extra data was
discarded.

2614 STREAM_OUT_TARGET_INVALID Specified address can not be a stream out target.

2615 STREAM_BUFF_SIZE_INVALID Specified buffer was either too large or not a power of 2.

2616 STREAM_OUT_BUFF_LOOP_OVERWRITE

2617 STREAM_OUT_BUFF_DNE The buffer size must be set before data can be written to it.

2618 STREAM_SAMPLES_PER_PKT_INVALID The specified number of samples per packet is too large.

2619 STREAM_BUFFER_DNE

2620 STREAM_NOT_RUNNING

2621 STREAM_SETTLING_INVALID Specified settling time is greater than the max possible.

2622 STREAM_OUT_LOOP_TOO_BIG Loop size to big for the current buffer size.

2623 STREAM_OUT_DATA_TRGT_MISSMATCH

2624 STREAM_INVALID_DIVISOR Selected divisor can not be used.

2625 STREAM_CHN_CAN_NOT_BE_STREAMED The requested channel can not be streamed.

2626 STREAM_OUT_DAC_IN_USE
The high resolution converter can not be used while stream out is used to
update a DAC.

2670 SWDT_ROLLT_INVALID

2671 SWDT_ENABLED
The watchdog must be disabled before the requested operation can be
performed.

2672 SWDT_DIO_SETTINGS_INVALID

2673 SWDT_DAC0_SETTINGS_INVALID

2674 SWDT_DAC1_SETTINGS_INVALID

2690 RTC_TIME_INVALID

2691 RTC_SNTP_TIME_INVALID

2692 RTC_NOT_PRESENT
The requested operation can not be performed on units without a real-time-
clock.

2700 SPI_MODE_INVALID Valid modes are 0-3.

2701 SPI_NO_DATA_AVAILABLE

2702 SPI_CS_PIN_INVALID Attempted to set an invalid pin.

2703 SPI_CLK_PIN_INVALID Attempted to set an invalid pin.

2704 SPI_MISO_PIN_INVALID Attempted to set an invalid pin.

2705 SPI_MOSI_PIN_INVALID Attempted to set an invalid pin.

2706 SPI_CS_PIN_RESERVED Selected pin is not available.

2707 SPI_CLK_PIN_RESERVED Selected pin is not available.

2708 SPI_MISO_PIN_RESERVED Selected pin is not available.

2709 SPI_MOSI_PIN_RESERVED Selected pin is not available.

2710 SPI_TRANSFER_SIZE_TOO_LARGE

2720 I2C_BUS_BUSY
One or both of the I2C lines are held low. Check hardware and reset the
bus.

2721 I2C_NO_DATA_AVAILABLE Attempted to read from an empty buffer.

2722 I2C_SDA_PIN_INVALID Attempted to set an invalid pin.

2723 I2C_SCL_PIN_INVALID Attempted to set an invalid pin.

31 Jul 2019

2724 I2C_SDA_PIN_RESERVED Selected pin is not available.

2725 I2C_SCL_PIN_RESERVED Selected pin is not available.

2726 I2C_TX_SIZE_TOO_LARGE

2727 I2C_RX_SIZE_TOO_LARGE

2728 I2C_BUFFER_OVERRUN

2729 I2C_SPEED_TOO_LOW The throttle setting is too low, watchdog may fire. Minimum value = 46000

2740 SBUS_COMM_TIME_OUT Slave device did not respond.

2741 SBUS_NO_ACK Slave device did not acknowledge the data transfer.

2742 SBUS_CUSTOM_MODE_INVALID

2743 SBUS_INVALID_DIO_NUM Attempted to set an invalid pin.

2744 SBUS_BACKGROUND_SERVICE_ON
Command-response reads can not be used while the background service
is running.

2745 SBUS_CHECKSUM_ERROR SHT communication checksum failed.

2760 TDAC_SDA_SCL_INVALID SCL must be even and SDA must be SCL+1.

2761 TDAC_SCL_INVALID Attempted to set an invalid pin.

2762 TDAC_INVALID_CHANNEL Specified channel not supported on this device.

2763 TDAC_CAL_READ_FAILURE Failed to read TDAC calibration.

2764 TDAC_NOT_FOUND The TDAC did not respond to communication attempts.

2770 ONEWIRE_UNSUPPORETD_FUNCTION Unknown function specified.

2771 ONEWIRE_NO_PRESENCE_PULSE Unable to detect any devices on the bus.

2780 ASYNCH_NUM_DATA_BITS_INVALID The specified number of data bits is not supported.

2781 ASYNCH_NUM_TO_WRITE_INVALID The number of bytes to send is invalid.

2782 ASYNCH_READ_BUFF_SIZE_INVALID The specified buffer size is invalid. Max is 2048.

2783 ASYNCH_BAUD_TOO_HIGH Baud rate too high for this device.

2784 ASYNCH_IS_ENABLED Specified operation can not be performed while enabled.

2785 ASYNCH_IS_NOT_ENABLED Specified operation can not be performed while disabled.

2786 ASYNCH_TX_BUFFER_FULL Transmit buffer is full.

2787 ASYNCH_TX_TIMEOUT Transmission timed out. Do not write more than 100 ms at a time.

2788 ASYNCH_BAUD_ZERO Baud rate is zero. Please specify a baud rate.

2801 FILE_IO_DISK_ERROR A hard error occurred in the low level disk I/O layer.

2802 FILE_IO_INTERNAL_ERROR Assertion failed.

2803 FILE_IO_NOT_READY The physical drive cannot work.

2804 FILE_IO_NO_FILE Could not find the file.

2805 FILE_IO_NO_PATH Could not find the path.

2806 FILE_IO_INVALID_NAME The path name format is invalid.

2807 FILE_IO_DENIED Access denied due to prohibited access or directory full.

2808 FILE_IO_EXIST Access denied due to prohibited access.

2809 FILE_IO_INVALID_OBJECT
The file/directory object is invalid. Under the context of getting performing a
"ls" command 2809 indicates that there are no more files.

2810 FILE_IO_WRITE_PROTECTED The physical drive is write protected.

2811 FILE_IO_INVALID_DRIVE The logical drive number is invalid.

31 Jul 2019

2812 FILE_IO_NOT_ENABLED The volume has no work area.

2813 FILE_IO_NO_FILESYSTEM There is no valid FAT12, FAT16, or FAT32 volume.

2814 FILE_IO_MKFS_ABORTED The f_mkfs() aborted due to any parameter error.

2815 FILE_IO_TIMEOUT Could not get a grant to access the volume within defined period.

2816 FILE_IO_LOCKED The operation is rejected according to the file sharing policy.

2817 FILE_IO_NOT_ENOUGH_CORE LFN working buffer could not be allocated.

2818 FILE_IO_TOO_MANY_OPEN_FILES Number of open files greater than allowable limit (files > _FS_SHARE).

2819 FILE_IO_INVALID_PARAMETER Given parameter is invalid.

2900 WIFI_ASSOCIATED

2901 WIFI_ASSOCIATING

2902 WIFI_ASSOCIATION_FAILED

2903 WIFI_UNPOWERED

2904 WIFI_BOOTING_UP

2905 WIFI_COULD_NOT_START

2906 WIFI_APPLYING_SETTINGS

2907 WIFI_DHCP_STARTED

2909 WIFI_OTHER

2920 WIFI_UPDATE_CONFIG

2921 WIFI_UPDATE_IN_PROG

2923 WIFI_UPDATE_REBOOT

2924 WIFI_UPDATE_SUCCESS

2925 WIFI_UPDATE_FAILED

2940 STREAM_AUTO_RECOVER_ACTIVE

2941 STREAM_AUTO_RECOVER_END

2942 STREAM_SCAN_OVERLAP

A new scan started before the previous scan finished. Generally occurs
because ScanRate > MaxSampleRate/NumChannels. Note that
MaxSampleRate is impacted by Range, ResolutionIndex, and Settling. Try
adding commands right before StreamStart to set AIN_ALL_RANGE=10,
STREAM_RESOLUTION_INDEX=0, and STREAM_SETTLING_US=0.

2943 STREAM_AUTO_RECOVER_END_OVERFLOW

2944 STREAM_BURST_COMPLETE

2945 STREAM_BUFFER_FULL Stream buffer filled up while autorecover was disabled. Stream stopped.

2950 SELFDIAG_MAIN_OSC_FAIL

2960 FILE_IO_NOT_FOUND The requested file was not found.

2961 FILE_IO_NO_DISK No SD card present or SC card could not be initialized.

2962 FILE_IO_INVALID_NAME The file name is invalid.

2963 FILE_IO_FILE_NOT_OPEN An open file is required to perform the requested operation.

2964 FILE_IO_TOO_MANY_OPEN There are too many files open.

2965 FILE_IO_SD_CARD_NOT_FOUND Failed to mount the SD card. Card may be bad or incompatible.

2966 FILE_IO_END_OF_CWD There are no more files in the current working directory.

Support - Table Styling Fix

31 Jul 2019

https://labjack.com/support-table-styling-fix

Installed Error Codes
Error codes can easily be interpreted into near-English error strings using the LJM_ErrorToString function.

Check your version of LJM's LabJackM.h for LJM error codes, or check ljm_constants.json for LJM and device errors codes.

LabJackM.h locations:

Windows
C:\Program Files\LabJack\Drivers\LabJackM.h
 - or -
C:\Program Files (x86)\LabJack\Drivers\LabJackM.h

Mac OS X
/usr/local/include/LabJackM.h

Linux
/usr/local/include/LabJackM.h

ljm_constants.json locations:

Windows Vista and later
C:\ProgramData\LabJack\LJM\ljm_constants.json

Windows XP
C:\Documents and Settings\All Users\Application Data\LabJack\LJM\ljm_constants.json

Mac OS X
/usr/local/share/LabJack/LJM/ljm_constants.json

Linux
/usr/local/share/LabJack/LJM/ljm_constants.json

5 - Troubleshooting / FAQ
Add new comment

For other questions, issues, or comments, please contact us.

5.1 - Does LJM handle signals?
Does LJM handle signals?

LJM catches all terminal signals, by default, in order to clean up LabJack device connections. LJM's signal handlers do the following:

Ends all device streaming and close all device connections
Optionally log which signal was received at LJM_FATAL priority
Essentially exit the processes by setting the signal handler to default and re-raising the signal

LJM attempts to set the signal handlers upon the first call to LJM that attempts communication. (LJM_CloseAll is a quick way to force LJM to initialize the
signal handlers.)

On Windows, signals are handled using signal. The signals that are handled are:

SIGINT
SIGILL
SIGABRT
SIGFPE
SIGSEGV
SIGTERM

On Linux/macOS, LJM uses the oldact parameter of sigaction to determine if there was previously a signal handler; if oldact is not NULL for a given signal,
LJM will reset oldact as the signal handler and not handle that signal. The default signals that are handled are:

SIGHUP
SIGINT
SIGQUIT
SIGILL
SIGABRT

Support - Long Table Styling
31 Jul 2019

https://labjack.com/support-long-table-styling
https://labjack.com/support/ljm/users-guide/function-reference/utility/ljmerrortostring
https://labjack.com/support/software/api/ljm/troubleshooting-faq#comment-form
https://labjack.com/contact
https://msdn.microsoft.com/en-us/library/xdkz3x12.aspx
http://man7.org/linux/man-pages/man2/sigaction.2.html

SIGFPE
SIGBUS
SIGSEGV
SIGTERM
SIGTSTP
SIGPIPE

Custom Cleanup on Linux/macOS: If your application needs to clean up resources, you can call LJM's signal handler from your own signal handler. To do
this, force LJM to initialize signal handlers by calling LJM_CloseAll, then call sigaction to set your handler, and finally set the previous signal handler to be
called in your handler. A Linux/macOS C++ example to catch Ctrl-C follows:

...
#include <signal.h>
#include <errno.h>

static volatile void (*ljm_handler)(int) = NULL;

void my_handler(int sig)
{
 // printf may not be re-entrant: because of this, it typically should not be
 // used in a signal handler. It is used here for ease of exposition.
 printf("my_handler is handling signal: %d\n", sig);

 // Perform custom cleanup behavior here
 ...

 if (ljm_handler != NULL) {
 printf("Calling ljm_handler from my_handler...\n");
 ljm_handler(sig);
 }
 exit(-1);
}

int main()
{
 // Initialize the LJM signal handler by "attempting" device communication
 // using LJM_CloseAll - we can ignore the return value. Other functions,
 // such as LJM_Open or LJM_ListAll work as well.
 LJM_CloseAll();

 struct sigaction act, oldact;
 act.sa_handler = my_handler;
 act.sa_flags = 0;
 int error = sigaction(SIGINT, &act, &oldact);
 if (error) {
 printf("There was an error during sigaction: %d\n", errno);
 exit(errno);
 }

 printf("oldact.sa_handler: %p\n", oldact.sa_handler);
 ljm_handler = (volatile void (*)(int))oldact.sa_handler;

 ...
}

Note that sigprocmask can be used to block signals while you are calling sigaction. Also note that other signal behaviors can be implemented using sigaction.
See the man-pages for sigaction and sigprocmask for more details.

Custom Cleanup for ctrl+c on Windows: If your application needs to clean up resources, you can use SetConsoleCtrlHandler to add a handler routine. Do
this after LJM's signal handlers are initialized. When ctrl+c is pressed, your handler routine is called, then LJM's signal handler is called, which exits the
program.

A minimal Python script to set up a handler routine by importing Kernel32.dll is as follows:

import ctypes
import sys

from labjack import ljm
ljm.closeAll() # Initializes LJM's signal handlers

if not sys.platform.startswith("win32"):
 raise ValueError("Unsupported platform: " + sys.platform)
kernel32 = ctypes.CDLL("Kernel32.dll")

def ctrlc_handler(dwCtrlType):
 print("Python ctrlc_handler called with dwCtrlType " + str(dwCtrlType))
 # This is where you would close a file, etc.

ctrlc_callback_type = ctypes.WINFUNCTYPE(None, ctypes.c_int)
cc_h = ctrlc_callback_type(ctrlc_handler)
success = kernel32.SetConsoleCtrlHandler(cc_h, True)
if not success:
 ValueError("SetConsoleCtrlHandler failed")

print "please press ctrl+c..."
while True:

31 Jul 2019

 pass

5.2 - Streaming: LJM_eStreamRead gives error 1301
(LJME_LJM_BUFFER_FULL) or many -9999 values in aData. What can I
try?
Streaming: LJM_eStreamRead gives error 1301 (LJME_LJM_BUFFER_FULL) or many -9999 values in aData. What can I try?

When the program running LJM code is unable to keep up with transferring stream data from the device to the computer, LJM_eStreamRead will return error
1301 (LJME_LJM_BUFFER_FULL) and/or stream data will contain many -9999 (LJM_DUMMY_VALUE) values. When device sample collection greatly
outpaces sample transfer from device, STREAM_AUTO_RECOVER_END_OVERFLOW can occur as well. Here's how to address these issues.

Briefly:

Use a ScansPerRead that is relatively large (one half of the ScanRate is a good place to start)
Try an Ethernet connection if possible
Call LJM_eStreamRead as quickly as possible
Use an additional thread or process
Increase the buffer sizes
Remove slow USB hubs
Remove / disable unused connection types
Free up processing power by ending unneeded processes
Use plain C/C++
Increase your program's priority level
Disable the LJM debug log

In more detail:

ScansPerRead: The larger the number of ScansPerRead you set up in LJM_eStreamStart, the less overhead there will be. Increasing ScansPerRead will see
larger improvements up until the maximum samples per packet is reached, and smaller improvements after that. For a T-series USB connection, the maximum
samples per packet is 24. Over Ethernet, the maximum samples per packet is 512. For example, if you have 2 channels, a ScansPerRead of 12 will utilize the
maximum samples per packet over USB. (24 samples per packet ÷ 2 samples per scan = 12 scans per packet)

Ethernet: Ethernet streaming usually ends up being more efficient for this reason, so if you are having problems with USB streaming, try switching to Ethernet
streaming if you can. Please note that WiFi streaming is not as fast as Ethernet streaming.

Call LJM_eStreamRead quickly: Sometimes there can be unexpectedly long delays between LJM_eStreamRead calls, such as during intense calculations.
Make sure your program is calling LJM_eStreamRead as quickly as possible. It may be worth putting some timing code in your program to calculate whether
LJM_eStreamRead is called at the right frequency. For example, if your scan rate is 100,000 Hz and your ScansPerRead is 50,000, you'll want
LJM_eStreamRead to be called at 2 Hz. You could also try removing all parts of the stream read loop except for the call to LJM_eStreamRead, then work your
way back towards full functionality.

Use an additional thread or process: Related to the need to the previous point to call LJM_eStreamRead as quickly possible, lengthy operations should be
performed in a separate thread or process from the thread that calls LJM_eStreamRead. If work being done in the loop that calls LJM_eStreamRead is slow,
such as in the case of displaying graphics, then LJM_eStreamRead will fall behind reading from stream. This may cause LJMScanBacklog to increase and
eventually cause a LJME_LJM_BUFFER_FULL error. To prevent this, the data from aData may be passed to an alternate thread or process which will perform
the lengthy operations.

Increase the buffer sizes: Both LJM and the streaming device have buffers that can run out of space.

To increase the device buffer: write a larger value to the device's STREAM_BUFFER_SIZE_BYTES register. See the T-series stream documentation for
details about STREAM_BUFFER_SIZE_BYTES.
To increase LJM's stream buffer: write a larger value to "LJM_STREAM_BUFFER_MAX_NUM_SECONDS". LJM uses this config to calculate the buffer
size according to the sample rate. As of this writing, the default is 20 seconds and the maximum is determined by the amount of memory your system has
available.

Remove slow USB hubs: Some USB hubs can reduce the maximum throughput of stream:

Try bypassing any USB hubs and plugging the LabJack's connection directly into the host computer's USB highest-speed port
Try a high-speed USB hub

Remove / disable unused connection types: Communication can incur non-trivial overhead in microprocessor-based devices. For example, when streaming
at maximum rates via USB on the T7, plugging in an Ethernet cable can suddenly cause skipped scans to occur.

If you're streaming via USB, unplug the LabJack's Ethernet cable, then power-cycle the device before re-starting stream.

Plain C/C++: Using C or C++ is the fastest way to use LJM. You may want to try running the stream_basic C example to see how it performs and adjusting
stream parameters as needed.

Priority level:

31 Jul 2019

https://labjack.com/support/software/api/ljm/function-reference/ljmestreamread
https://labjack.com/support/software/api/ljm/function-reference/ljmestreamread
https://labjack.com/support/datasheets/t-series/communication/stream-mode
https://labjack.com/support/software/api/ljm/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/software/examples/ljm/c

Windows program priority can be set by using the start command (/realtime is the highest priority)
Linux and Mac OS X program priority can be set by using the nice command (-20 is the highest priority)

Disable the LJM debug log: Though the LJM debug log is disabled by default, you can ensure it's disabled by setting LJM_DEBUG_LOG_MODE to 1
(LJM_DEBUG_LOG_MODE_NEVER) by using LJM_WriteLibraryConfigS—i.e. call
LJM_WriteLibraryConfigS(LJM_DEBUG_LOG_MODE, LJM_DEBUG_LOG_MODE_NEVER).

5.3 - What LJM files are installed on my machine?

Description of Files

The following files may be installed, depending on if the installation is a full install or a minimal install. See below for the difference.

LabJackM.h - a header file that defines LJM functions and contains function usage information
LabJackM library / dll file(s), which contains the actual LJM code.
On Windows, the .NET LJM bindings, LabJack.LJM.dll.
The LabJack LJM folder, which contains:

ljm.log
the default debug log file (Debug logging in LJM is not enabled by default.)

ljm_auto_ips.json
a file to help open connections to LabJack devices during relevant Open calls and ListAll calls.

ljm_constants.json file
a constants file that defines registers and error codes

ljm_deep_search.config
contains IP address ranges for the LJM Deep Search feature

ljm_specific_ips.config
contains IP addresses that will be connected to during every network-based Open or ListAll

ljm_startup_configs.json file
defines the start-up configuration parameters of LJM

readme.md
gives a brief explanation of the files installed to the LabJack LJM folder

Full Install

A full installation of LJM includes library files, device rules files, and graphical applications. It consists of the following files:

Windows 32-bit:

C:\Program Files\LabJack\Drivers\LabJackM.h
C:\Program Files\LabJack\Drivers\LabJackM.lib
C:\Program Files\LabJack\Drivers\LabJack.LJM.dll
C:\Windows\SysWOW64\LabJackM.dll or C:\Windows\System32\LabJackM.dll
The LabJack LJM folder, which contains configuration, debug, and information files:

Windows Vista and later: C:\ProgramData\LabJack\LJM\
Windows XP: C:\Documents and Settings\All Users\Application Data\LabJack\LJM

Windows 64-bit:

C:\Program Files (x86)\LabJack\Drivers\LabJackM.h
C:\Program Files (x86)\LabJack\Drivers\64bit\LabJackM.lib
C:\Program Files (x86)\LabJack\Drivers\LabJack.LJM.dll
C:\Windows\System32\LabJackM.dll
The LabJack LJM folder, which contains configuration, debug, and information files:

Windows Vista and later: C:\ProgramData\LabJack\LJM\
Windows XP: C:\Documents and Settings\All Users\Application Data\LabJack\LJM

Linux:

/usr/local/include/LabJackM.h
/usr/local/lib/libLabJackM.so (which is a symlink to the versioned libLabJackM.so.<version> in the same directory)
/usr/local/share/LabJack/LJM (the LabJack LJM folder), which contains configuration, debug, and information files.
90-labjack.rules - usually installed in /lib/udev/rules.d, but can be installed in /etc/udev/rules.d
/opt/labjack_kipling
/usr/local/bin/labjack_kipling
/usr/share/applications/labjack_kipling.desktop
/usr/share/icons/hicolor/48x48/apps/labjack_kipling.png
Old versions of LJM: /usr/local/lib/liblabjackusb.so (which is a symlink to the versioned liblabjackusb.so.<version> in the same directory)

macOS:

/usr/local/include/LabJackM.h
/usr/local/lib/libLabJackM.dylib (which is a symlink to a versioned libLabJackM-<version>.dylib in the same directory)

31 Jul 2019

https://support.microsoft.com/kb/191771
https://en.wikipedia.org/wiki/Nice_(Unix)
https://labjack.com/support/ljm/users-guide/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/ljm/users-guide/constants/ljmdebuglogfile
https://labjack.com/support/software/api/ljm/function-reference/AutoIPsConfigs
https://labjack.com/support/ljm/users-guide/constants/ljmconstantsfile
https://labjack.com/support/software/api/ljm/constants/ljmdeepsearchfile
https://labjack.com/support/software/api/ljm/constants/DeepSearchConfigs
https://labjack.com/support/software/api/ljm/constants/ljmspecialaddressesfile
https://labjack.com/support/software/api/ljm/function-reference/ljmopen
https://labjack.com/support/software/api/ljm/function-reference/ljmlistall
https://labjack.com/support/software/api/ljm/function-reference/LJMStartupConfigs
https://labjack.com/support/software/installers/ljm

/usr/local/share/LabJack/LJM (the LabJack LJM folder), which contains configuration, debug, and information files.

Minimal Install

A minimal installation of LJM does not include graphical applications. It consists of the following files.

Windows 32-bit:

C:\Program Files\LabJack\Drivers\LabJackM.h
C:\Program Files\LabJack\Drivers\LabJackM.lib
C:\Program Files\LabJack\Drivers\LabJack.LJM.dll
C:\Windows\SysWOW64\LabJackM.dll or C:\Windows\System32\LabJackM.dll
The LabJack LJM folder (see above)

Windows 64-bit:

C:\Program Files (x86)\LabJack\Drivers\LabJackM.h
C:\Program Files (x86)\LabJack\Drivers\64bit\LabJackM.lib
C:\Program Files (x86)\LabJack\Drivers\LabJack.LJM.dll
C:\Windows\System32\LabJackM.dll
The LabJack LJM folder (see above)

Linux:

/usr/local/include/LabJackM.h
/usr/local/lib/libLabJackM.so (see above)
/usr/local/share/LabJack/LJM (see above)
90-labjack.rules (see above)

macOS:

Please contact us if you'd like to try a macOS minimal installation.

5.4 - What are the system requirements?
LJM is supported on Windows, macOS, and Linux.

Windows

Supported: Windows XP or later
Supported: 32-bit or 64-bit
Required: A C or C++ compiler. Microsoft's Visual Studio works well

Windows UWP

See: LJM Windows UWP Support

Linux

Supported: 32-bit, 64-bit, ARMv6, ARMv7l (armhf), aarch64
Supported: kernel 2.6.28 or later (older versions may work as well)
Required: libusb-1.0 library or greater version
Required: A C or C++ compiler. gcc works well
Required: libstdc++ version 4.4.7 or later
Required: glibc version 2.12 or later
Most distributions are supported, including:

CentOS 6.7 and later
Most versions of Ubuntu
Raspberry Pi's Raspbian
Let us know if there's a distribution you'd like to use that doesn't work

If you have equal or greater versions of the above libraries, LJM should work.

macOS

Supported: macOS 10.9 and later
Supported: 64-bit (x86_64)

Legacy 32-bit (i386) and PowerPC (ppc) builds are available
Required: The Xcode developer tools (or other C or C++ compiler)

5.5 - What network adapters will LJM use?
If your host machine has multiple network adapters, LJM will try to discover Ethernet/WiFi LabJack connections on all of them.

31 Jul 2019

https://labjack.com/support/software/installers/ljm/minimal-ljm-installers
https://labjack.com/contact
https://labjack.com/support/software/installers/ljm
https://www.visualstudio.com/en-us/visual-studio-homepage-vs.aspx
https://labjack.com/support/software/api/ljm/windows-uwp-initial-setup
http://libusb.info/
https://gcc.gnu.org/
https://labjack.com/contact
https://developer.apple.com/xcode/download/

On Windows, LJM uses GetAdaptersInfo to find determine what network adapters are available. On Linux and Mac, LJM uses getifaddrs.

It is important that each network adapter is configured to have the correct subnet mask, since each broadcast address is determined from a bitwise-OR of the
network IP with the inverse of the subnet mask.

5.6 - While writing to internal flash, I'm getting "INTFLASH_KEY_INVALID
- Error code: 2354". How do I write to internal flash?
While writing to internal flash, I'm getting "INTFLASH_KEY_INVALID - Error code: 2354". How do I write to internal flash?

When writing to internal flash, the key is only valid for the duration of a single packet, so the operation to write the key and to write or erase the data must be
grouped into a single packet. LJM has multiple value functions, such as LJM_eWriteAddresses, which allow you to write the key while writing other values. To
ensure packets are within the allowable packet size, you can read the MaxBytesPerMB parameter of LJM_GetHandleInfo to get the maximum packet size for
the connection type in use. Then, use the Modbus protocol description to figure out how many values you can send. LJM uses Feedback (MBFB).

Also, note that having LJM_ALLOWS_AUTO_CONDENSE_ADDRESSES enabled (as it is by default) will help the efficiency of writing to internal flash.

5.7 - Why won't LJM open devices or find devices via LJM_ListAll through
the network?
Why won't LJM open devices or find devices via LJM_ListAll through the network?

In general, you may want to consult the Basic Network & Troubleshooting guide.

You may want to try LJM Specific IPs for devices that can be ping'd but for which LJM cannot seem to find.

Linux

 Check your iptables configuration. If disabling iptables fixes the issue, you may want to alter your iptables rules. In the general case, running a command such
as:

sudo iptables -I INPUT 2 -p udp --sport 52362 -j ACCEPT

will add an iptables rule in the second spot (INPUT 2) to allow UDP packets on the port 52362, which is the UDP port LJM uses to discover devices.

Don't forget to save your iptables after altering the configurations. For example, on CentOS:

sudo /sbin/service iptables save

You may want to test your iptables is correct after a reboot.

5.8 - LJME_RECONNECT_FAILED
When LJM detects that a device has not responded to a communication attempt within the expected timeframe, it attempts to reconnect to the device. If the
reconnection is successful, the operation is retried. If the reconnection fails, the LJME_RECONNECT_FAILED error is returned.

Make sure the LJM timeout is adequate

Reading multiple high resolution AINs can be split up - Analog input readings with high resolution indices result in longer sample times, so if you are using
a function like eReadNames to read multiple AINs high resolution indices, you need to split those reads up or increase LJM's given
_SEND_RECEIVE_TIMEOUT_MS config. It is generally safe to read a single AIN at a time, no matter what resolution index is set. The appropriate timeout can be calculated according to

the length of time for each AIN sample as given by a Datasheet appendix, for example.

Use the most reliable connection type possible - USB is most reliable, while Ethernet and WiFi connections are less reliable due to inherent network
complications. WiFi is less reliable than Ethernet due to possible interference.

Use an appropriate send/receive timeout - LJM's default _SEND_RECEIVE_TIMEOUT_MS configs balance reliability and speed of error detection. For
networks with high latency or for failure-intolerant operations, use a longer timeout to increase reliability.

Retry upon failure

Real-world device communication is prone to errors. Though LJM internally retries failed operations once, you may need to retry by calling the same function
that returned LJME_RECONNECT_FAILED with the same parameters. Doing so is usually appropriate for programs that only loop on reading a given set of
registers but is generally not appropriate for writes to or reads from buffer registers.

Determine which device to reconnect to, in case of failure

Reconnection will, by default, reconnect a handle according to the same connection type and the same serial number that it was initially opened with, and
always to the same device type. For more details, see the following LJM configurations:

LJM_AUTO_RECONNECT_STICKY_CONNECTION

31 Jul 2019

https://labjack.com/support/datasheets/t7/internal-flash
https://labjack.com/support/ljm/users-guide/function-reference/multiple-value-functions
https://labjack.com/support/ljm/users-guide/function-reference/ljmewriteaddresses
https://labjack.com/support/ljm/users-guide/function-reference/ljmgethandleinfo
http://labjack.com/support/modbus/protocol-details
https://labjack.com/support/ljm/users-guide/constants/ljmallowsautocondenseaddresses
https://labjack.com/support/app-notes/basic-networking-troubleshooting
https://labjack.com/support/software/api/ljm/constants/SpecificIPsConfigs
https://en.wikipedia.org/wiki/Ping_(networking_utility)
https://labjack.com/support/software/api/ljm/function-reference/ljmereadnames
https://labjack.com/support/software/api/ljm/constants/timeout-configs
https://labjack.com/support/datasheets/t7/appendix-a-3-1
https://labjack.com/support/software/api/ljm/constants/timeout-configs
https://labjack.com/support/datasheets/t7/communication/modbus-map/buffer-registers
https://labjack.com/support/ljm/users-guide/constants/ljmautoreconnectstickyconnection

LJM_AUTO_RECONNECT_STICKY_SERIAL

Reconnection notification

Use LJM_RegisterDeviceReconnectCallback to get notified when reconnection occurs.

5.9 - Is LJM thread-safe?
LJM is thread-safe. It synchronizes devices between threads so that multiple threads can use the same device handle.

Applications using the same device handle in multiple threads still must coordinate the closing of device handles—if one application thread calls LJM_Close for
a given device handle, that device handle will be closed for all threads.

For applications that need to stream data, LJM _SetStreamCallback is an easy way start a worker thread.

Other Remarks

For using LJM and the Python libraries multiprocessing and Tkinter on macOS: It matters when you import Tkinter —you must import it after the multiprocessing

process(es) have started. For more details, see the forum topic Multiprocessing with Tkinter and LabJackPython.

5.10 - gdb breaks with "signal SIG40, Real-time event 40."
LJM uses gRPC, which internally uses SIG40 to wake up threads. By default, gdb breaks when the process receives a signal. This causes gdb to output
something like the following:

Thread 7 "eNames" received signal SIG40, Real-time event 40.
[Switching to Thread 0x7fffef7fe700 (LWP 90205)]
0x00007ffff7364627 in __GI_epoll_pwait (epfd=17, events=0x7fffef7fd600, maxevents=100, timeout=10000, set=0x7fffef7fe650)
 at ../sysdeps/unix/sysv/linux/epoll_pwait.c:42
42 ../sysdeps/unix/sysv/linux/epoll_pwait.c: No such file or directory.
(gdb)

This looks problematic, but it's actually fine. More info on gdb and signals can be found in section 5.4 Signals of the gdb documentation.

Solution: Suppress gdb's default break behavior for SIG40

To circumvent this, you can use the gdb command:

handle SIG40 noprint nostop

(Related gRPC issue: SIG36 while debugging with gdb #7906.)

Solution: Disable LJM_RPC_ENABLE

To disable LJM's use of gRPC, see How do I disable gRPC?

5.11 - Can I write an LJM program without a device present?

Overview

LJM 1.1901 and later

If you need to write an LJM program but don't have a device available, you can use LJM_DEMO_MODE to prevent LJM from trying to open a real device.
Demo mode is good for when your device is in shipping or being used for another project.

Demo mode allows you to:

Test your software setup to make sure LJM and language wrappers are working.
Write and learn the structure of a simple LJM program.

Try it out now by installing LJM.

Usage

To use demo mode, pass LJM_DEMO_MODE (or the string "-2") as the Identifier for LJM_Open or LJM_OpenS. That will give you a handle that you can use
for command-response communication—however, demo mode does not support stream mode.

Example of demo mode using C (including the ErrorCheck function include in the C/C++ examples):

 err = LJM_Open(LJM_dtANY, LJM_ctANY, LJM_DEMO_MODE, &handle);
 ErrorCheck(err, "LJM_Open");

 err = LJM_eWriteName(handle, "DAC0", 2.5);

31 Jul 2019

https://labjack.com/support/ljm/users-guide/constants/ljmautoreconnectstickyserial
https://labjack.com/support/software/api/ljm/function-reference/LJMRegisterDeviceReconnectCallback
https://labjack.com/support/software/api/ljm/function-reference/opening-and-closing
https://labjack.com/support/datasheets/t-series/communication/stream-mode
https://labjack.com/support/software/api/ljm/function-reference/ljmsetstreamcallback
https://labjack.com/support/software/api/ljm/function-reference/ljmsetstreamcallback
https://labjack.com/forums/python/multiprocessing-tkinter-and-labjackpython
https://sourceware.org/gdb/onlinedocs/gdb/Signals.html
https://github.com/grpc/grpc/issues/7906
https://labjack.com/support/software/api/ljm/disable-ljm-rpc-enable
https://labjack.com/support/software/installers/ljm
https://labjack.com/support/software/api/ljm/function-reference/ljmopens/identifier-parameter
https://labjack.com/support/datasheets/t-series/communication
https://labjack.com/support/software/examples/ljm/c

 ErrorCheck(err, "LJM_eWriteName");

 double value;
 err = LJM_eReadName(handle, "AIN0", &value);
 ErrorCheck(err, "LJM_eReadName");
 printf("read: %f\n", value);

 err = LJM_Close(handle);
 ErrorCheck(err, "LJM_Close");

This may output something like:

read: 0.000000

With demo mode, functions like LJM_eReadNames return meaningless values. Future versions of LJM might return different values.

Not Supported

Demo mode does not support stream functions.

Demo mode does not support low-level functions.

5.12 - What permissions does LJM need?
By default, LJM tries to access the following:

Local file system
USB
Network
Named mutexes

Some programing environments constrain permissions by default. If LJM is not working, it's worth checking if permissions are set correctly.

Set LJM Configurations Before Accessing Devices

The LJM configurations mentioned on this page should essentially be set before any other LJM calls, like LJM_Open, since they alter the behavior of functions
LJM_Open.

Use LJM_WriteLibraryConfigS to set the configurations that take numbers as values.

Use LJM_WriteLibraryConfigStringS to set the configurations that take strings as values.

Local file system

Necessary:

LJM needs to access a ljm_constants.json file so that it can look up register information. By default, LJM tries to read the ljm_constants.json file from the
location where ljm_constants.json is installed. However, the location of ljm_constants.json can be specified via the LJM_CONSTANTS_FILE
configuration. For more information, see LJM_CONSTANTS_FILE.

The following shows an example of error output when the ljm_constants.json file could not be accessed:

The error constants file '/usr/local/share/LabJack/LJM/ljm_constants.json' could not be opened.

Optional:

LJM may access other files on the file system for the purposes of improving network device detection, configuration, and debug logging.

USB

LJM needs access to USB in order to communicate via USB with LabJack devices. Alternately, you can use network connections or demo mode.

Network

LJM needs access to the network in order to communicate via TCP or UDP with LabJack devices. Alternately, you can use USB connections or demo mode.

For LJM on Windows UWP, TCP communications require the internetClientServer capability.

Optional:

Each LJM instance (each process that loads LJM, including LabJack Kipling) tries to communicate with other LJM instances for the purpose of identifying
and sharing USB connections to LabJack devices. Since this functionality is not necessarily important, you can disable gRPC.

The following shows an example of error output that may result from LJM's usage of gRPC failing due to permissions on a Unix-based machine:

E0205 16:05:30.305708000 4295751104 server_chttp2.c:53] {"created":"@1549404330.305647000","description":"No address added out of total 1
resolved","file":"src/core/ext/transport/chttp2/server/chttp2_server.c","file_line":260,"referenced_errors":[{"created":"@1549404330.305643000","description":"Failed to add any wildcard

31 Jul 2019

https://labjack.com/support/software/api/ljm/function-reference/stream-functions
https://labjack.com/support/software/api/ljm/function-reference/lowlevel-functions
https://labjack.com/support/software/api/ljm/function-reference/LJMWriteLibraryConfigS
https://labjack.com/support/software/api/ljm/function-reference/LJMWriteLibraryConfigStringS
https://labjack.com/support/software/api/ljm/constants/ljmconstantsfile
https://labjack.com/support/software/api/ljm/what-ljm-files-are-installed
https://labjack.com/support/software/api/ljm/demo-mode
https://labjack.com/support/software/api/ljm/demo-mode
https://labjack.com/support/software/api/ljm/windows-uwp-initial-setup
https://labjack.com/support/software/applications/t-series/kipling
https://labjack.com/support/software/api/ljm/disable-ljm-rpc-enable

listeners","file":"src/core/lib/iomgr/tcp_server_posix.c","file_line":353,"referenced_errors":[{"created":"@1549404330.305592000","description":"OS
Error","errno":47,"file":"src/core/lib/iomgr/socket_utils_common_posix.c","file_line":271,"os_error":"Address family not supported by protocol family","syscall":"socket","target_address":"
[::]:0"},{"created":"@1549404330.305643000","description":"Unable to configure
socket","fd":4,"file":"src/core/lib/iomgr/tcp_server_utils_posix_common.c","file_line":215,"referenced_errors":[{"created":"@1549404330.305631000","description":"OS
Error","errno":1,"file":"src/core/lib/iomgr/tcp_server_utils_posix_common.c","file_line":188,"os_error":"Operation not permitted","syscall":"bind"}]}]}]}

Named Mutexes

LJM uses named mutexes to synchronize usage gRPC. To circumvent this, you can disable gRPC by setting LJM_RPC_ENABLE to 0.

LJM uses named mutexes to synchronize usage of the LJM Auto IPs file. To circumvent this, you can disable LJM Auto IPs by setting LJM_AUTO_IPS to 0.

5.13 - How do I disable gRPC?
To disable LJM's use of gRPC, set the LJM library configuration LJM_RPC_ENABLE to 0 (false). Do this before calling any Open or ListAll calls. This can be
done in the startup configs or by writing using WriteLibraryConfigS.

For example, in C:

 int error = LJM_WriteLibraryConfigS("LJM_RPC_ENABLE", 0);
 if (error != LJME_NOERROR) {
 // handle error
 printf("LJM_RPC_ENABLE fail\n");
 }

or, with LJM_Utilities.h:

 SetConfigValue("LJM_RPC_ENABLE", 0);

5.14 - Does LJM support Windows UWP?
We've heard from customers of LJM working on Windows UWP, but there's a couple of steps you need to take.

Please see the permissions page for details, but here's the basic steps:

Move ljm_constants.json to a local directory that your app can access and change LJM_CONSTANTS_FILE to point to that file path.

Disable gRPC by setting LJM_RPC_ENABLE to 0.

For TCP connections:

Disable LJM Auto IPs by setting LJM_AUTO_IPS to 0.

You'll also need to add the internetClientServer capability:

<Capabilities>
 <Capability Name="internetClientServer" />
</Capabilities>

If you have any trouble with LJM working on Windows UWP, please contact us.

5.15 - Sharing a particular device among multiple processes or
computers
Sometimes it's beneficial to access a particular device from multiple processes or computers.

The most lightweight way to share a device is using UDP reads. The leader strategy is the most robust option.

Device considerations �

Connection types

USB: T-series devices support a single USB connection.

Ethernet: T-series devices support 2 simultaneous Ethernet TCP connections. They also support essentially unlimited Ethernet UDP connections.

WiFi: T7-Pros support a single WiFi TCP connection. They also support WiFi UDP connections, but Ethernet UDP should be preferred.

All together: T-series device connections are not mutually exclusive. For example, a T7-Pro could simultaneously handle 1 USB connection, 2 Ethernet TCP
connections, and 1 WiFi TCP connection, plus Ethernet UDP connections.

Modbus

The Modbus module in firmware is single-threaded and synchronous. This means that only one Modbus operation may be serviced at a time. To estimate

31 Jul 2019

https://labjack.com/support/software/api/ljm/disable-ljm-rpc-enable
https://labjack.com/support/software/api/ljm/function-reference/AutoIPsConfigs
https://labjack.com/support/software/api/ljm/constants/RPCConfigs
https://labjack.com/support/software/api/ljm/function-reference/LJMStartupConfigs
https://labjack.com/support/software/examples/ljm/c
https://labjack.com/support/software/api/ljm/ljm-permissions
https://labjack.com/contact
#udp
#leader
http:///tmp/wktemp-4618c05e-1ce1-46d2-b812-b5bc008895f7.html#device-considerations
#udp

whether a single device will be able to be shared according to your requirements, see T-series data rates for information about how much communication
overhead and sampling time is required. For example, reading the AIN of a T7 using the highest resolution index takes 159 milliseconds. No other processes
are able to perform Modbus operations for that duration.

Lua

The on-board Lua scripting engine interfaces with the Modbus module, similar to how external connections do. While this means that Lua scripting has full
functionality, it also means Lua scripts can be another source of contention.

Lua can also be used to gather data and put results into user RAM. This is useful for long-running operations, such as AIN reads with high resolution.

Strategy: UDP - For network communication �

Using UDP to communicate with the device is simple to implement. It's generally the recommended way to share a device among multiple processes.

UDP is technically connectionless, which means that sharing a device on the network using UDP doesn't consume any of the T-series devices'
connections. The result is that your loop doesn't have to worry about opening or closing. With UDP, you can open a device handle using UDP as the
ConnectionType, then your loop only needs to read. Collisions are less likely because opening incurs an overhead.

Strategy: Open-read-close - For USB or network communication �

The open-read-close strategy is when each process that needs to access the device opens a connection, reads from the device (or writes), then immediately
closes the device connection. This strategy is:

Simple to implement
A good alternative to UDP when using USB
Sufficient for slower sampling frequencies, depending on how many processes access the device
Susceptible to sampling jitter

Pseudocode for doing open-read-close might look loosely like the following:

while (reading) {
 device = OpenDevice(openParameters)
 result = ReadFromDevice(device, readParameters)
 CloseDevice(device)
 ProcessResult(result)
 Sleep()
}

One downside of open-read-close compared to UDP reads is that opening incurs overhead in two forms: the TCP SYN/FIN commands incur very slight
overhead (a couple of packets) and LJM reads from the device every time it opens a device (less than 10 round-trip packets).

One downside of open-read-close compared to the leader strategy is that clock drift between different computers can increase the likeliness that multiple
computers will try to open the device at the same time.

With LJM, you may want to experiment with the open timeouts and send timeouts to give each process a better chance at re-trying to opens and Modbus
operations. For example, you might want to set the open timeout (for whatever connection type you're using) to 200 ms, so that there are 5 attempts to read
from the device within 1 second.

Strategy: Use a Leader Process - For USB or network communication �

The leader strategy is when one process acts as the leader. The leader is the only process that reads from the device. Other processes then read from the
leader. This works for USB or network connections. This strategy:

Requires the most custom work
Is the most robust strategy
Can have the least amount of sampling jitter
Is compatible with stream mode
Scales to allow the most processes reading from the device

For network connections, the leader process may be on a separate computer from the others and it exposes network connections to the other 3 hosts that let
them get readings.

Regardless of whether the connection is via USB or the network, the leader responsibilities include:

Leader must know what the other processes need to sample and at what interval.
Leader must expose an interface for the other processes to read from.

Files, named pipes, shared memory, remote procedure calls, and REST endpoints are a couple of ways for the leader to expose such an interface.
Recommended proof-of-concept for USB: The leader can write a timestamp and the current value to a file for each non-leader process. For
example, if the leader knows that Process B needs to read AIN2, it could write the current Epoch time comma-separated with the current
value of AIN2 to a file—the file could be named proc_b_ain2.csv and the leader could write 1556211610, 3.2 to indicate that AIN2's current value
at that time is 3.2. Process B could then read that file. Every time the timestamp changes, Process B knows that a new value has been
written.

This is the approach that is likely have the least amount of sampling jitter because the leader process can regularly schedule readings (the LJM timing
functions are helpful for this). Clock drift between multiple computers does not affect the sampling time because only one computer's clock is triggering the

31 Jul 2019

https://labjack.com/support/datasheets/t-series/appendix-a-1
https://labjack.com/support/datasheets/t-series/lua-scripting
https://labjack.com/support/datasheets/t-series/lua-scripting#user-ram
http:///tmp/wktemp-4618c05e-1ce1-46d2-b812-b5bc008895f7.html#udp
https://labjack.com/support/software/api/ljm/function-reference/opening-and-closing
http:///tmp/wktemp-4618c05e-1ce1-46d2-b812-b5bc008895f7.html#open-read-close
https://labjack.com/support/software/api/ljm/constants/timeout-configs
http:///tmp/wktemp-4618c05e-1ce1-46d2-b812-b5bc008895f7.html#leader
https://labjack.com/support/datasheets/t-series/communication/stream-mode
https://wikipedia.org/wiki/Unix_time
https://labjack.com/news/ljm-timing-functions

sample collections.

For hardware-timed sampling using stream mode, this is the only possible type of device sharing strategy because T-series devices may only perform one
stream at a time. Also, stream mode takes over the entire analog input system such that analog inputs are not available to any command-response reads.

Since communication with the device can be a performance bottleneck, the leader strategy is the most scalable because it can incur the least amount of
communication overhead with the device.

31 Jul 2019

https://labjack.com/support/datasheets/t-series/communication/stream-mode

	LJM User's Guide
	Supported Devices
	LJM Download
	Examples
	Reading This Document
	Table of Contents Note
	Offline PDF Note

	1 - Overview
	2 - Function Reference
	2.1 - Opening and Closing
	Summary
	Opening
	Closing
	Device Not Found?

	2.1.1 - Open
	Syntax
	Parameters
	Returns
	Related Functions
	Remarks
	Examples

	2.1.2 - OpenS
	Syntax
	Parameters
	Returns
	Relevant Functions
	Remarks
	Examples

	2.1.2.1 - Identifier Parameter
	Common Usage
	Network-Specific
	USB-Specific
	No Device

	2.1.3 - Close
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.1.4 - CloseAll
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.2 - Single Value Functions
	Summary
	Name Functions
	Address Functions

	2.2.1 - eWriteName
	Syntax
	Parameters
	Returns
	Remarks
	Example

	2.2.2 - eReadName
	Syntax
	Parameters
	Returns
	Remarks
	Example

	2.2.3 - eWriteAddress
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.2.4 - eReadAddress
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.2.5 - eWriteNameString
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.2.6 - eReadNameString
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.2.7 - eWriteAddressString
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.2.8 - eReadAddressString
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.3 - Multiple Value Functions
	Summary
	Name Functions
	Address Functions
	LJM automatically splits operations into multiple packets as needed

	2.3.1 - eWriteNames
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.3.2 - eReadNames
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.3.3 - eWriteAddresses
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.3.4 - eReadAddresses
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.3.5 - eNames
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.3.6 - eAddresses
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.3.7 - eReadAddressArray
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.3.8 - eReadAddressByteArray
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.3.9 - eReadNameArray
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.3.10 - eReadNameByteArray
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.3.11 - eWriteAddressArray
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.3.12 - eWriteAddressByteArray
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.3.13 - eWriteNameArray
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.3.14 - eWriteNameByteArray
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.4 - Stream Functions
	2.4.1 - eStreamStart
	Syntax
	Parameters
	Returns
	Remarks
	Configuration
	How samples are moved from the device to your application 🔗
	Externally clocked stream 🔗
	Triggered stream 🔗
	Burst Stream
	Auto-recovery Precaution 🔗
	Low-Latency 🔗
	Stream Speed 🔗
	Reducing Stream Startup Speed 🔗
	Example

	2.4.2 - eStreamRead
	Syntax
	Parameters
	Returns
	Remarks
	Example

	2.4.3 - eStreamStop
	Syntax
	Parameters
	Returns
	Remarks
	Example

	2.4.4 - StreamBurst
	Syntax
	Parameters
	Returns
	Remarks
	Example

	2.4.5 - SetStreamCallback
	Syntax
	Parameters
	Returns
	Remarks

	2.4.6 - GetStreamTCPReceiveBufferStatus
	The Receive Buffer
	Syntax
	Parameters
	Returns
	Remarks

	2.5 - Device Information Functions
	LJM_GetHandleInfo
	🔗 Device Discovery
	🔗 Device Reconnection

	2.5.1 - GetHandleInfo
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.5.2 - ListAll
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.5.3 - ListAllS
	Syntax
	Parameters
	Returns
	Remarks
	Examples
	Device Not Found?

	2.5.4 - ListAllExtended
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.5.5 - RegisterDeviceReconnectCallback
	Syntax
	Parameters
	Returns
	Remarks

	2.6 - Utility Functions
	2.6.1 - ErrorToString
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.6.2 - TCVoltsToTemp
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.6.3 - NumberToIP
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.6.4 - NumberToMAC
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.6.5 - IPToNumber
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.6.6 - MACToNumber
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.6.7 - NameToAddress
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.6.8 - NamesToAddresses
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.6.9 - AddressToType
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.6.10 - AddressesToTypes
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.7 - Timing Functions
	2.7.1 - GetHostTick
	Syntax
	Returns
	Compatibility
	Example
	Determining What's Slow

	2.7.2 - GetHostTick32Bit
	Syntax
	Parameters
	Returns
	Compatibility
	Example

	2.7.3 - StartInterval
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.7.4 - WaitForNextInterval
	Syntax
	Parameters
	Returns
	Examples

	2.7.5 - CleanInterval
	Syntax
	Parameters
	Returns
	Examples

	2.8 - Debugging Functions
	Debugging Functions Overview

	2.8.1 - Log
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.8.2 - ResetLog
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.9 - Low-level Functions
	2.9.1 - Feedback Functions
	Summary
	Want Something Simpler?
	Examples

	2.9.1.1 - AddressesToMBFB
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.9.1.2 - MBFBComm
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.9.1.3 - UpdateValues
	Syntax
	Parameters
	Returns
	Remarks
	Examples

	2.9.2 - Raw Byte Functions
	Raw Byte Functions Overview

	2.9.2.1 - ReadRaw
	Syntax
	Parameters
	Returns
	Remarks

	2.9.2.2 - WriteRaw
	Syntax
	Parameters
	Returns
	Remarks

	2.9.3 - Type Conversion Functions
	Type Conversion Functions Overview

	2.9.3.1 - ByteArrayToFLOAT32
	Syntax
	Parameters
	Returns
	Remarks

	2.9.3.2 - ByteArrayToINT32
	Syntax
	Parameters
	Returns
	Remarks

	2.9.3.3 - ByteArrayToUINT16
	Syntax
	Parameters
	Returns
	Remarks

	2.9.3.4 - ByteArrayToUINT32
	Syntax
	Parameters
	Returns
	Remarks

	2.9.3.5 - FLOAT32ToByteArray
	Syntax
	Parameters
	Returns
	Remarks

	2.9.3.6 - INT32ToByteArray
	Syntax
	Parameters
	Returns
	Remarks

	2.9.3.7 - UINT16ToByteArray
	Syntax
	Parameters
	Returns
	Remarks

	2.9.3.8 - UINT32ToByteArray
	Syntax
	Parameters
	Returns
	Remarks

	2.10 - Library Configuration Functions
	Library Configuration Functions Overview
	🔗 Configuration Parameters
	🔗 Altering Configurations
	Altering Modbus Map Constants or Error Constants
	Reading Configurations

	2.10.1 - GetSpecificIPsInfo
	Syntax
	Parameters
	Info Semantics
	Returns

	2.10.2 - LoadConfigurationFile
	Syntax
	Parameters
	Returns
	Remarks
	Example

	2.10.3 - LoadConstants
	Syntax
	Returns
	Remarks

	2.10.4 - LoadConstantsFromFile
	Syntax
	Parameters
	Returns
	Remarks
	Example

	2.10.5 - LoadConstantsFromString
	Syntax
	Parameters
	Returns
	Remarks
	Example

	2.10.6 - ReadLibraryConfigS
	Syntax
	Parameters
	Returns
	Remarks
	Example

	2.10.7 - ReadLibraryConfigStringS
	Syntax
	Parameters
	Returns
	Remarks
	Example

	2.10.8 - WriteLibraryConfigS
	Syntax
	Parameters
	Returns
	Remarks
	Example

	2.10.9 - WriteLibraryConfigStringS
	Syntax
	Parameters
	Returns
	Remarks
	Example

	2.10.10 - GetDeepSearchInfo
	Syntax
	Parameters
	Info Semantics
	Returns

	Easy Functions
	Documentation has moved. Please see:
	Summary
	Address Functions
	Name Functions
	Remarks

	3 - Constants
	A note on language wrapper differences
	LJM Constants
	LJM Configuration Constants

	3.1 - Timeout Configs
	Timeout Configs Overview
	Details
	Relevant Functions
	Example

	LJM_ETHERNET_OPEN_TIMEOUT_MS
	Summary
	Details

	LJM_ETHERNET_SEND_RECEIVE_TIMEOUT_MS
	Summary
	Default
	Details

	LJM_USB_SEND_RECEIVE_TIMEOUT_MS
	Summary
	Default
	Details

	LJM_WIFI_OPEN_TIMEOUT_MS
	Summary
	Details

	LJM_WIFI_SEND_RECEIVE_TIMEOUT_MS
	Summary
	Default
	Details

	LJM_OPEN_TCP_DEVICE_TIMEOUT_MS
	Summary
	Details

	LJM_SEND_RECEIVE_TIMEOUT_MS
	Summary
	Details

	3.2 - LJM Specific IPs
	A Note About Auto IPs
	LJM Specific IPs
	Example ljm_specific_ips.config
	Syntax
	Default Location
	Remarks

	LJM_SPECIAL_ADDRESSES_STATUS
	Summary
	Possible Values
	Remarks

	LJM_SPECIFIC_IPS_FILE
	Summary
	Remarks

	3.3 - LJM Startup Configs
	LJM Startup Configs
	Default Location
	Parsing
	Default Values
	Syntax
	Windows Paths

	3.4 - LJM Auto IPs
	LJM Auto IPs Overview
	Remarks
	A Note About Specific IPs

	LJM_AUTO_IPS
	Summary
	Details
	Relevant Functions

	LJM_AUTO_IPS_FILE
	Summary
	Default Location
	Remarks

	3.5 - LJM Deep Search
	LJM Deep Search
	Example ljm_deep_search.config
	Syntax
	Default Location
	Remarks

	LJM_DEEP_SEARCH_FILE
	Summary
	Remarks

	3.6 - Device Search Configs
	Relevant Functions
	Remarks

	3.7 - RPC Configs
	LJM_ALLOWS_AUTO_CONDENSE_ADDRESSES
	Summary
	Details
	Relevant Functions
	Example

	LJM_ALLOWS_AUTO_MULTIPLE_FEEDBACKS
	Summary
	Details
	Relevant Functions
	Example

	LJM_AUTO_RECONNECT_STICKY_CONNECTION
	Summary
	Details
	Relevant Functions

	LJM_AUTO_RECONNECT_STICKY_SERIAL
	Summary
	Details
	Relevant Functions

	LJM_AUTO_RECONNECT_WAIT_MS
	Summary
	Relevant Functions

	LJM_CONSTANTS_FILE
	Summary
	Default Value
	Relevant Constants
	Relevant Functions
	Example

	LJM_DEBUG_LOG_FILE
	Default
	Summary
	Details
	Relevant Constants
	Relevant Functions
	Example

	LJM_DEBUG_LOG_FILE_MAX_SIZE
	Summary
	Relevant Functions
	Example

	LJM_DEBUG_LOG_LEVEL
	Summary
	Details
	Relevant Functions
	Example

	LJM_DEBUG_LOG_MODE
	Summary
	Relevant Functions
	Example

	LJM_ERROR_CONSTANTS_FILE
	Summary
	Default Value
	Relevant Constants
	Relevant Functions
	Example

	LJM_LIBRARY_VERSION
	Summary
	Relevant Functions
	Example

	LJM_MODBUS_MAP_CONSTANTS_FILE
	Summary
	Default Value
	Relevant Constants
	Relevant Functions
	Example

	LJM_OLD_FIRMWARE_CHECK
	Summary
	Values
	Details
	Relevant Functions
	Example

	LJM_STREAM_AIN_BINARY
	Summary
	Remarks
	Relevant Functions

	LJM_STREAM_DIGITAL_AUTO_RECOVERY_ERROR_DETECTION_DISABLED
	Summary
	Values
	Details
	Relevant Functions
	Example

	LJM_STREAM_RECEIVE_TIMEOUT_MODE
	Summary
	Remarks
	Relevant Functions

	LJM_STREAM_RECEIVE_TIMEOUT_MS
	Summary
	Remarks
	Relevant Functions
	Example

	LJM_STREAM_SCANS_RETURN
	Summary
	Remarks
	Relevant Functions
	Example

	LJM_STREAM_TCP_RECEIVE_BUFFER_SIZE
	Summary
	Remarks
	Relevant Functions

	LJM_STREAM_TRANSFERS_PER_SECOND
	Summary
	Details
	Relevant Functions
	Example

	LJM_USE_TCP_INIT_FOR_T7_WIFI_TCP
	Summary
	Details
	Relevant Functions

	4 - Error Codes
	Error Codes Overview
	Support - Table Styling Fix
	Support - Long Table Styling

	Installed Error Codes
	LabJackM.h locations:
	ljm_constants.json locations:

	5 - Troubleshooting / FAQ
	5.1 - Does LJM handle signals?
	Does LJM handle signals?

	5.2 - Streaming: LJM_eStreamRead gives error 1301 (LJME_LJM_BUFFER_FULL) or many -9999 values in aData. What can I try?
	Streaming: LJM_eStreamRead gives error 1301 (LJME_LJM_BUFFER_FULL) or many -9999 values in aData. What can I try?

	5.3 - What LJM files are installed on my machine?
	Description of Files
	Full Install
	Minimal Install

	5.4 - What are the system requirements?
	5.5 - What network adapters will LJM use?
	5.6 - While writing to internal flash, I'm getting "INTFLASH_KEY_INVALID - Error code: 2354". How do I write to internal flash?
	While writing to internal flash, I'm getting "INTFLASH_KEY_INVALID - Error code: 2354". How do I write to internal flash?

	5.7 - Why won't LJM open devices or find devices via LJM_ListAll through the network?
	Why won't LJM open devices or find devices via LJM_ListAll through the network?

	5.8 - LJME_RECONNECT_FAILED
	Make sure the LJM timeout is adequate
	Retry upon failure
	Determine which device to reconnect to, in case of failure
	Reconnection notification

	5.9 - Is LJM thread-safe?
	Other Remarks

	5.10 - gdb breaks with "signal SIG40, Real-time event 40."
	Solution: Suppress gdb's default break behavior for SIG40
	Solution: Disable LJM_RPC_ENABLE

	5.11 - Can I write an LJM program without a device present?
	Overview
	Usage
	Not Supported

	5.12 - What permissions does LJM need?
	Set LJM Configurations Before Accessing Devices
	Local file system
	USB
	Network
	Named Mutexes

	5.13 - How do I disable gRPC?
	5.14 - Does LJM support Windows UWP?
	5.15 - Sharing a particular device among multiple processes or computers
	Device considerations 🔗
	Strategy: UDP - For network communication 🔗
	Strategy: Open-read-close - For USB or network communication 🔗
	Strategy: Use a Leader Process - For USB or network communication 🔗

